
Efficient Heap Management for Declarative Data
Parallel Programming on Multicores

Clemens Grelck1,2 and Sven-Bodo Scholz1

1 University of Hertfordshire
Department of Computer Science

Hatfield, United Kingdom
c.grelck,sscholz@herts.ac.uk

2 University of Lübeck
Institute of Software Technology and Programming Languages

Lübeck, Germany
grelck@isp.uni-luebeck.de

Abstract. Declarative data parallel programming for shared memory
multiprocessor systems implies paradigm-specific demands on the organi-
sation of memory management. As a key feature of declarative program-
ming implicit memory management is indispensable. Yet, the memory
objects to be managed are very different from those that are predomi-
nant in general-purpose functional or object-oriented languages. Rather
than complex structures of relatively small items interconnected by ref-
erences, we are faced with large chunks of memory, usually arrays, which
often account for 100s of MB each. Such sizes make relocation of data or
failure to update arrays in-place prohibitively expensive.
To address these challenges of the data parallel setting, the functional
array language SaC employs continuous garbage collection via reference
counting combined with several aggressive optimisation techniques. How-
ever, we have observed that overall memory performance does not only
rely on efficient reference counting techniques, but to a similar extent on
the underlying memory allocation strategy. As in the general memory
management setting we can identify specific demands of the declarative
data parallel setting on heap organisation.
In this paper, we propose a heap manager design tailor-made to the needs
of concurrent executions of declarative data parallel programs whose
memory management is based on reference counting. We present run-
time measurements that quantify the impact of the proposed design and
relate it to the performance of several different general purpose heap
managers that are available in the public domain.

1 Introduction

The ubiquity of multicore processors has made parallel processing a mainstream
necessity rather than a niche business [1]. Declarative languages may benefit
from this paradigm shift as their problem-oriented nature and the absence of
side-effects facilitate (semi-)implicit parallelisation or at least help in explicit

parallelisation on a high level of abstraction. One approach is to exploit data par-
allelism on arrays as pursued by functional languages such as Sisal [2], Nesl [3]
or SaC [4, 5] and recently also adopted by Haskell [6].

Declarative processing of large arrays of data has a specific challenge known
as the aggregate update problem [7]. The (otherwise very desirable) absence
of side-effects prevents incremental in-place updates of array element values as
they are abundant in imperative array processing. A naive solution requires to
copy the entire array which quickly becomes prohibitive with increasing array
size. Efficient declarative array processing requires a mechanism that determines
when it is safe to update an array in place and when not. The decision to
reuse memory associated with an argument array to store a result array also
depends on the characteristics of the operation itself. With the prevailing tracing
garbage collectors [8] this is generally not feasible. The only way to achieve in-
place updates of arrays in main-stream functional languages seems to be making
arrays stateful, either by language semantics as in ML [9] or through a proper
functional integration of states via monads in Haskell [10] or uniqueness typing
in Clean [11]. However, these approaches also enforce a very non-declarative style
of programming as far as arrays are concerned [12].

To mitigate the aggregate update problem without compromising a declara-
tive style of programming, Sisal, Nesl and SaC use reference counting [8] as
a basis for memory management. At runtime each array is associated with a
reference counter that keeps track of the number of active references to an array.
Reference counting allows us to release unused memory as early as possible and
to update arrays destructively in suitable operations provided that the reference
counter indicates no further pending references. Strict evaluation generally tends
to reduce the number of pending references; it seems to be necessary to make
this memory management technique effective.

Reference counting does have its well known downsides, e.g. memory over-
head, de-allocation cascades or the difficulty to identify reference cycles. How-
ever, in the particular setting of array processing they are less severe: individual
chunks of memory are relatively large, data is not deeply structured, and cyclic
references typically precluded by language semantics. Static analysis can be used
effectively to reduce the overhead inflicted by reference counter updates, to iden-
tify opportunities for immediate memory and even data reuse and to make reuse
and de-allocation decisions already at compile time. Surveys of such techniques
can be found in [13, 14].

Unlike most forms of tracing garbage collection, reference counting is just
half the story. It leads to a sequence of allocation and de-allocation requests
that still need to be mapped to the linear address space of a process by some un-
derlying mechanism. This is often considered a non-issue because low-level mem-
ory allocators have been available for decades for explicit heap management in
machine-oriented languages (see [8] for a survey). Yet, many (SaC) applications
spend a considerable proportion of their execution time in the memory allocator.
As soon as runtime performance is a criterion for the suitability of a declarative
language for a certain application domain, every (milli-)second counts, and im-

provements in the interplay between the reference counting mechanism and the
underlying heap manager can have a significant impact on overall performance.

We propose a heap manager that is tailor-made for the needs of multithreaded
declarative array processing and reference counting. Our design aims at outper-
forming existing allocators by exploiting three distinct advantages: Firstly, we
adapt allocation/de-allocation strategies to the specific characteristics of array
processing and reference counting. For example, we expect a large variety in
the size of requested memory chunks from very small to very large, but only a
relatively small number of different chunk sizes. Furthermore, reference counting
(unlike manual memory management) guarantees that any allocated chunk of
memory is released eventually. Consequently, overhead may arbitrarily be split
between allocation and de-allocation operations.

Secondly, we use a rich (internal) interface between reference counting mech-
anism and allocator, that allows us to exchange extra information and let our
allocator benefit from static code analysis. In contrast, the standard interfaces
between applications and allocators are very lean (e.g. malloc and free in C or
new and delete in C++) and restrict the flow of information from the applica-
tion to the allocator.

Thirdly, we tightly integrate our allocator with the multithreaded runtime
system [15]. As soon as threads run truly simultaneously on a multiprocessor
system or multicore processor, access to heap-internal data structures requires
synchronisation, which adversely affects performance and may even serialise pro-
gram execution through the back door. While some general-purpose memory
allocators do take multithreading into account [16–18], they need to deal with a
wide range of multithreaded program organisations reasonably well. In contrast,
the multithreaded runtime organisation of compiler-parallelised code typically is
rather restricted. For example, the automatic parallelisation feature of the SaC
compiler [15] results in a runtime program organisation where the number of
threads is limited by the number of hardware execution units, certain threads
are a-priori known to execute exclusively and memory allocated by one thread
is known to be de-allocated by the same thread.

The contributions of this paper are

– to quantify the impact of heap management on compiler-parallelised declar-
ative array processing code,

– to identify specific aspects of heap management that allow a tailor-made heap
manager to exploit distinctive advantages over off-the-shelf implementations,

– to propose the design of a tailor-made heap manager in the context of SaC

– and to evaluate the benefit of using private heap management.

The remainder of the paper is organised as follows. In Section 2 we illustrate
the problem using a microbenchmark. In Section 3 we outline the design of
the SaC private heap manager and demonstrate its impact on overall runtime
performance in Section 4. Finally, Section 5 outlines some related work before
we draw conclusions in Section 6.

2 Problem illustration

We illustrate the impact of memory allocators on overall runtimes by means
of the small SaC example program shown in Fig. 1. The program emulates
a memory allocation and de-allocation pattern typical for many data parallel
applications: a data parallel operation is repetitively applied to a vector A of
length [10000000/X], as generated by the library function mkarray. The data
parallel operation within the for-loop is defined in terms of a with-construct,
a SaC array comprehension. For each element of A, it recomputes its value by
first allocating a vector of length X and subsequently summing these elements
up.3 This creates a very common memory demand pattern: within a data parallel
section each element computation requires the creation of a temporary array and,
hence, some memory allocation and de-allocation. Furthermore, all allocations
are of the same size which, again, is typical for many scientific applications such
as those investigated in [20, 21, 19].

int main()
{
A = mkarray([10000000/X], 0);
for (i=0; i<50; i+=1) {
A = with {

(. <= [idx] <= .) : A[idx] + sum(mkarray([X], idx));
}: modarray(A);

}
return(sum(A));

}

Fig. 1. Example SaC program

It should be noted here that we carefully restricted compiler optimisations
in order to ensure that for this simple example allocations and de-allocations
of intermediate vectors of length X effectively happen at runtime. Normally, the
SaC compiler would fold the reduction operation (sum) and the build operation
(mkarray) [22]. Even if that failed, memory management optimisations would
pre-allocate memory for the temporary vector outside of the with-construct [14].

In order to quantify the impact of the memory allocator, we measure the
runtimes of the program from Fig. 1 with varying values for X: 1000, 250, 100
and 25. The definition of the vector lengths of A and that of the intermediate
vectors guarantee that, irrespective of the value of X, we always perform 500
million additions. This allows us to observe the impact of the allocator as the
decrease of X corresponds to an increase in the number of memory allocations
(and de-allocations). We observe the effect of 500.000, 2 million, 5 million and
20 million memory allocations and de-allocations, respectively. Fig. 2 shows pro-
gram execution times of our example program on a 12-processor SUN Ultra
Enterprise 4000 multiprocessor using the standard Solaris memory allocator.

3 For any details about the with-construct as well as about the purely functional
semantics of this rather imperative looking code see [4, 5].

Additional experiments using the Gnu allocator coming with Linux essentially
led to the same observations.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0.5 2 5 20

R
un

tim
e

[s
ec

s]
.

Number of memory allocations [millions].

1 processor
2 processors
4 processors
6 processors
8 processors
10 processors

Fig. 2. Execution times of SaC program shown in Fig. 1

Focussing on single processor performance first, we can see that despite a
fixed amount of overall computations, runtimes grow linearly with the number
of memory allocations. Although this is not surprising in principle, the growth
rate in fact is. From the measurements we can deduce that the pure computing
time is roughly 30 seconds. Taking into account that even in the most alloca-
tion intensive case we have about 25 additions per allocation plus a certain loop
overhead, the measured memory management overhead (roughly 140 seconds!)
is extremely high. Obviously, the general-purpose allocators cannot benefit from
the simple case of alternating allocations and de-allocations of always the same
amount of memory. Our observations allow the conclusion that for these appli-
cation scenarios the memory allocator is the key to overall runtime performance,
whereas improvements in code generation and the compiler in general may easily
be ineffective.

Looking at multiprocessor performance we observe that increasing parallelism
yields substantial slowdowns, although our microbenchmark is almost embarrass-
ingly parallel and the total workload is substantial. The reason for this behaviour
lies in an inherently sequential design of the memory allocator, which seemingly
has been adapted for multithreaded execution more or less naively by locking
operations. This solution proves to be unsuitable for memory management in-
tensive data parallel applications like our microbenchmark.

The bottom line of these observations is twofold: Firstly, a genuinely multi-
threaded memory allocator design that reduces locking to a minimum is indis-
pensable. Secondly, data parallel applications may spend considerable propor-
tions of their overall runtime in memory management operations, making the
memory allocator a prime target for optimisation.

3 Design of a SAC-specific heap manager

The memory organisation used by the SaC private heap manager (or SacPhm
for short) is characterised by a hierarchy of multiple nested heaps, as illustrated
in Fig. 3. At the top of the hierarchy is a single global heap, which controls
the entire address space of the process. It may actually grow or shrink during
program execution, as additional memory is requested from the operating system
or unused memory is released to it.

local heap local heaplarge data chunk

small

data chunk

small

data chunk

local subheap local subheap

chunk

data

medium medium

chunk

data

local subheap

local heap

global heap

Fig. 3. Memory organisation using multiple nested heaps.

However, only very large chunks of memory are directly allocated from the
global heap. Memory requests below some threshold size are satisfied from one
of possibly several local heaps. A local heap is a contiguous piece of memory with
a fixed size, which in turn is allocated from the global heap. Grouping together
memory chunks of similar sizes tends to have a positive impact on memory
fragmentation. Once the capacity of a local heap is exhausted, an additional
local heap is allocated from the global heap.

In multithreaded execution each thread is associated with its individual local
heap(s). This organisation addresses both scalability and false sharing [23] issues:
Each thread may allocate and de-allocate arrays of up to a certain size without
interfering with other threads. Small amounts of memory are guaranteed to
be allocated from different parts of the address space if requested by different
threads. Furthermore, housekeeping data structures for maintaining local heaps
are kept separate by different threads. This allows us to keep them in processor-
specific cache memories without invalidation by a cache coherence mechanism.

Three properties of the SaC multithreaded runtime system [15] are essen-
tial to make this design feasible. Firstly, the number of threads is limited by

the number of parallel processing units available (i.e. rather small), and thread
creation/termination are limited to program startup/termination. Hence, it be-
comes feasible to a-priori associate each thread with some (non-negligible) local
heap memory. Secondly, the data parallel approach encourages (though does not
enforce) applications where the memory demands of the individual threads are
rather similar. As a consequence, we may pre-allocate some heap memory for
each thread at program startup when initialising the heap. Thirdly, the run-
time system guarantees that any memory allocated by one thread is eventually
released by the same thread. This restriction keeps thread-private local heaps
in a coherent state throughout program execution. A general-purpose memory
allocator cannot make such assumptions. Instead, it should work reasonably well
both for large numbers of threads and heterogeneous allocation behaviour, in-
cluding threads that mostly allocate memory while others mostly de-allocate
memory following a producer/consumer pattern.

In our allocator design only accesses to the global heap may require syn-
chronisation. The word may here is motivated by another restriction of the
multithreaded runtime system: Program execution is organised as a sequence
of alternating single-threaded and multithreaded supersteps [15]. Any memory
management request to the global heap issued in a single-threaded superstep
proceeds without synchronisation. Our experience is that very large arrays, al-
located from the global heap, are predominantly allocated (and de-allocated)
during single-threaded execution for subsequent multithreaded initialisation of
elements. In practice, locking is reduced to the very rare case when the initially
pre-allocated local heap of some thread is exhausted and needs to be extended
during program execution.

The hierarchical memory organisation is repeated once again on the level of
local heaps. Only medium-sized memory requests are directly satisfied by one
of the local heaps. Allocations of memory chunks below a certain size are again
grouped together in local subheaps, which in turn are allocated from local heaps.
The distinction between heaps and subheaps is mainly motivated by different
housekeeping mechanisms. In local heaps as well as in the global heap we allocate
differently sized chunks from a contiguous address space, whereas subheaps use
a fixed-size chunk allocation scheme. The latter allows us to quickly identify
a suitable available memory chunk. Likewise, marking chunks as available or
allocated inflicts very little time overhead. For larger chunks of memory, however,
the resulting internal fragmentation is not tolerable. Therefore, we use a more
expensive variable chunk size scheme above a certain threshold size. This scheme
keeps track of chunk sizes and, in particular, splits larger parts of contiguous
memory into pieces to accommodate allocation requests and coalesces adjacent
free chunks of memory to conversely form larger chunks.

Both fixed and variable chunk size heap organisation schemes are well stud-
ied [8]. Nonetheless, we can customise our concrete implementation to specific
aspects of data parallel array processing. In this context we often observe that ap-
plications only use a very restricted number of differently sized arrays (although
the range of different array sizes may be very large). Therefore, we assume lo-

cality of time in similar way as cache memories do: If we de-allocate a memory
chunk of some size, we consider it likely that we need to allocate a memory
chunk of the same size very soon thereafter. Consequently, we employ a deferred
coalescing scheme that only reconstructs larger chunks of memory if a concrete
allocation request cannot be satisfied from the immediately available resources.
Deferred coalescing moves overhead from de-allocations to allocations, which is
not so desirable for general-purpose allocators because the number of allocations
typically exceeds the number of de-allocations. However, with the allocator being
a backend for the reference counting mechanism it is guaranteed that any allo-
cated chunk of memory is released eventually. Hence, it doesn’t matter whether
we concentrate effort in allocation or in de-allocation operations.

g
lo

b
al

 h
ea

p
lo

ca
l

h
ea

p
lo

ca
l

su
b

h
ea

p

10
size range

size range

size range

size range

size range

size range

size range

size range

size range

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

1

0

K

K + 1

K − 1

M − 1

0 / 0

1 / 0

0 / 1

1 / 1

0 / T−1

1 / T−1

K−1 / 0 K−1 / 1 K−1 / T−1

K / 0 K / 1 K / T−1

K+1 / 0 K+1 / 1 K+1 / T−1

M−1 / 0 M−1 / 1 M−1 / T−1

M

M + 1

N − 1

M / 0

M+1 / 0

N−1 / 0

thread thread thread
T − 1

Fig. 4. Matrix of allocation arenas

The hierarchy of nested heaps requires a coarse-grained classification of mem-
ory requests into small, medium and large chunks. In order to accelerate search-
ing for appropriate memory chunks, we effectively use a finer-grained classifica-
tion and introduce an entire matrix of allocation arenas, as illustrated in Fig. 4.
Allocation arenas represent the basic organisational entities for heap manage-

ment. Each request for allocation or de-allocation of memory first identifies the
appropriate allocation arena, which provides

– a list of available, appropriately sized chunks of memory,
– an allocation strategy,
– a de-allocation strategy and
– a backup strategy to obtain more memory.

Arena identification is a binary decision problem whose depth is logarithmic
in the number of allocation arenas. However, in practice the exact amount of
memory needed to represent some array is often known statically to the program
and, hence, also the appropriate allocation arena can be determined at compile
time. It is the restricted interface of (e.g. malloc and free) that prevents general-
purpose memory allocators from taking advantage of static chunk size knowledge.
In contrast, our integrated solution employs a much richer interface between
reference counting mechanism and backend heap manager that already selects
the allocation arena at compile time whenever possible.

Likewise, the tight integration of reference counting and heap management
permits specific optimisations. For example, at runtime any SaC array is rep-
resented by a (typically large) data vector and a (always small) descriptor that
accommodates the reference counter and dynamic shape information. This de-
sign enables the seemless flow of arrays between program parts written in SaC
and program parts written in other languages using the SaC foreign language
interface. The separation of SaC-specific structural and administrative infor-
mation from actual data, unfortunately, also requires two allocations and two
de-allocations per array. In most cases allocation and de-allocation of data vec-
tor and descriptor are made in conjunction, but this is not guaranteed and upon
de-allocation it is undecidable whether a data vector has been allocated within
the realm of SaC or outside. However, our private heap manager makes exactly
this decidable. This optimisation alone accounts for about 10% execution time
improvement through a range of applications.

4 Evaluation

We have repeated the initial experiment described in Section 2 with the SaC
private heap manager and three off-the-shelf multithreaded memory allocators:

– MTmalloc [16] is a replacement for the standard memory allocator, which
is provided by SUN itself starting with Solaris-7.

– PTmalloc [17] adapts the serial allocator DLmalloc [24] for use with mul-
tithreaded applications. It also employs multiple heaps to reduce contention,
but there is no static mapping of heaps to threads. Upon each memory re-
quest, threads search for an unlocked heap, lock the heap, and then apply
the serial allocation/de-allocation techniques adopted from DLmalloc.

– Hoard [18] seems to be the most recent development in multithreaded mem-
ory managers. It maps a possibly large number of threads to a generally much
smaller number of separate heaps by means of hashing techniques.

S
o

la
ri

s

H
o

a
rd

P
T

M

M
T

M

S
A

C

1.50

1.25

1.00

0.75

0.50

0.25

1.75
500K allocations

X=1000

3
2

.7
s

3
8

.9
s

3
4

.0
s

2
2

1
.7

s

4
1

.5
s

1.50

1.25

1.00

0.75

0.50

0.25

1.75

X=250

2M allocations

H
o

a
rd

P
T

M

M
T

M

S
A

C

S
o

la
ri

s

3
6

.2
s

5
9

.8
s

4
6

.2
s

5
7

.1
s

4
4

.6
s

1.50

1.25

1.00

0.75

0.50

0.25

1.75

X=100

5M allocations

H
o

a
rd

P
T

M

M
T

M

S
A

C

S
o

la
ri

s

3
6

.9
s

8
5

.6
s

6
2

.1
s

9
5

.9
s

6
5

.5
s

1.50

1.25

1.00

0.75

0.50

0.25

1.75

X=25

20M allocations

H
o

a
rd

P
T

M

M
T

M

S
A

C

S
o

la
ri

s

2
2

5
.4

s

1
6

2
.2

s

2
9

0
.1

s

1
7

6
.9

s

4
8

.0
s

Fig. 5. Single processor performance of multithreaded allocators in comparison with
the serial Solaris allocator as base line using the SaC microbenchmark of Fig. 1

Fig. 5 shows the single processor performance achieved by SacPhm and that
of the three other multithreaded memory allocators in comparison with the se-
rial Solaris allocator used in Section 2. Regardless of the concrete problem size,
MTmalloc incurs a runtime overhead of about 25% compared with the serial
allocator. For Hoard the respective overhead grows with increasing memory
management frequency from about 25% to more than 60%. Surprisingly, perfor-
mance is much worse for problem size X=1000, where single processor execution
time exceeds that of any other allocator by almost an order of magnitude. Hav-
ing a closer look at the implementation of Hoard reveals that memory requests
exceeding a certain threshold size are directly mapped to virtual memory by us-
ing the mmap and munmap system routines. Obviously, their frequent application
incurs prohibitive overhead.

In contrast, PTmalloc performs similar to the serial allocators, slightly out-
performing them with increased memory management frequency. For SacPhm

it can be observed that starting out with a performance loss of about 20% rel-
ative to standard allocators for problem size X=1000, this slowdown turns into
a significant speedup with increasing frequency of memory allocations and de-
allocations. With overall execution time being clearly dominated by dynamic
memory management overhead for X=25, the SaC-specific memory allocator
makes the overall program run 3.7 times faster than with the Solaris allocator.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 4 6 8 10

Sp
ee

du
ps

 re
la

tiv
e

to
 S

ol
ar

is
 m

al
lo

c
si

ng
le

 p
ro

ce
ss

or
 p

er
fo

rm
an

ce

Number of processors

X=1000, 500K allocations
SAC PHM
MTmalloc
PTmalloc
Hoard

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 4 6 8 10

Sp
ee

du
ps

 re
la

tiv
e

to
 S

ol
ar

is
 m

al
lo

c
si

ng
le

 p
ro

ce
ss

or
 p

er
fo

rm
an

ce

Number of processors

X=250, 2M allocations
SAC PHM
MTmalloc
PTmalloc
Hoard

 1

 3

 5

 7

 9

 11

 13

 15

 17

 1 2 4 6 8 10

Sp
ee

du
ps

 re
la

tiv
e

to
 S

ol
ar

is
 m

al
lo

c
si

ng
le

 p
ro

ce
ss

or
 p

er
fo

rm
an

ce

Number of processors

X=100, 5M allocations
SAC PHM
MTmalloc
PTmalloc
Hoard

 1
 4
 7

 10
 13
 16
 19
 22
 25
 28
 31
 34

 1 2 4 6 8 10

Sp
ee

du
ps

 re
la

tiv
e

to
 S

ol
ar

is
 m

al
lo

c
si

ng
le

 p
ro

ce
ss

or
 p

er
fo

rm
an

ce

Number of processors

X=25, 20M allocations
SAC PHM
MTmalloc
PTmalloc
Hoard

Fig. 6. Multi processor performance of multithreaded allocators in comparison with
the serial Solaris allocator as base line using the SaC microbenchmark of Fig. 1

Fig. 6 shows the multiprocessor performance of the multithreaded allocators
relative to the base line set by the serial Solaris allocator. This “true” parallel
performance takes the different sequential performance levels into account, hence
the different starting points of the curves for a single processor. First of all, we
observe that MTmalloc scales rather poorly for all problem sizes investigated.
This observation is rather surprising for an allocator that is particularly designed
for exactly this scenario. However, it coincides with much more thorough inves-
tigations made by the developers of Hoard [18]. In contrast, PTmalloc scales

fairly well; it is not clear why hardly any speedup can be observed when switch-
ing from 6 to 8 processors for some problem sizes, but additional measurements
have confirmed these figures. High scalability can be observed for Hoard for
all problem sizes that are not mapped directly to the virtual memory manager
(i.e. X=1000). SacPhm turns out to scale as well as Hoard, but provides this
scalability on top of a substantially higher single processor performance.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 6 8 10

Sp
ee

du
p

re
la

tiv
e

to
 s

eq
ue

nt
ia

l e
xe

cu
tio

n

Number of processors

NAS benchmark FT
SAC with PHM
SAC without PHM

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 6 8 10

Sp
ee

du
p

re
la

tiv
e

to
 s

eq
ue

nt
ia

l e
xe

cu
tio

n

Number of processors

NAS benchmark MG
SAC with PHM
SAC without PHM

Fig. 7. Performance impact of SacPhm on NAS benchmarks FT (left) and MG (right)

In addition to our microbenchmark we have also investigated the impact
of heap management on two non-trivial benchmarks from the NAS benchmark
suite [25]: SaC implementations of 3-dimensional multigrid relaxation (bench-
mark MG [20]) and 3-dimensional fast-Fourier transforms (benchmark FT [21]).
Fig. 7 quantifies the effect of SacPhm on runtime performance (size class A).

The two benchmarks show very different allocation/de-allocation patterns.
FT uses fairly large arrays of complex numbers (256x256x128) that are exclu-
sively allocated and de-allocated in single-threaded mode. We use the Danielson-
Lanczos algorithm for 1d-FFTs on vectors of length 128 and 256, respectively,
and explicitly create 2 (4) vectors of length 64, 4 (8) vectors of length 32, etc.
All these allocations and the corresponding de-allocations happen during multi-
threaded execution. Unsurprisingly, Fig. 7 shows SacPhm to be indispensable.
However, our declarative implementation of FT is so much dominated by memory
management overhead that the good single-processor performance of SacPhm
on small chunks of data that are repeatedly allocated and de-allocated turns out
to be crucial as well.

The benchmark MG implements a multigrid method that starts with arrays
of size 256x256x256 and performs alternating convolution and mapping steps.
In each mapping step the array size shrinks by a factor of two in each dimension
until the minimum size of 4x4x4 is reached; further mapping steps let the array
size grow again. Like in the FT benchmark, we are faced with a substantial
number of allocations (and de-allocations) over a wide range of chunk sizes.
However, in contrast to FT none of them occur during data-parallel operations.

As a consequence, the serial allocator performs reasonably well. Nevertheless, it
takes SacPhm to achieve good overall speedups through a reduction of absolute
overhead inflicted by dynamic memory management.

5 Related work

In the previous section have already acknowledged and evaluated several general-
purpose memory allocators that are specifically designed for multithreaded
program execution, namely SUN’s MTmalloc [16], PTmalloc [17] and
Hoard [18].

Only few declarative languages besides SaC explicitly focus on arrays. We
mention Sisal [2] and Nesl [3], which both use reference counting. While the
developers of Sisal spent considerable effort into efficient reference counting [13],
they left the underlying heap management issues to the C system library [26].

In Nesl the VCode interpreter takes responsibility for memory manage-
ment [27, 28]. Its design differs from our solution in various aspects4. Firstly,
by making the reference counter a part of the heap administration data struc-
tures Nesl fully integrates reference counting with its own heap management.
In contrast, we explicitly allocate reference counters (as part of a more general
array descriptor) on the heap. This approach allows us to employ (third party)
heap managers that are fully unaware of our reference counting scheme for ex-
perimental comparisons like the one in Section 4 as well as for backup reasons.
Secondly, the Nesl solution organises the heap differently. While Nesl does use
multiple free lists for different chunk sizes for the same purposes as we do, it
nevertheless allocates all chunk sizes from the same contiguous address space.
In contrast, our allocation arenas (inspired from general-purpose multithreaded
allocator designs) actually keep differently sized chunks in different areas of the
address space. This design has a positive impact on fragmentation and solves
the false sharing problem. Thirdly, we haven’t found any information concern-
ing multithreaded heap management in the context of Nesl, and the solution
described in [27] does not support concurrently executing threads.

6 Conclusion

We have outlined an important aspect of the memory management subsystem of
the functional array language SaC: the integration between the reference count-
ing mechanism that decides when to allocate and de-allocate heap memory and
the underlying heap manager that maps concurrent allocation and de-allocation
requests of multiple threads to the linear address space of a process. Empirical
data shows the significance of an integrated approach to achieve good runtime
performance in declarative array processing on multiprocessor and multicore
systems.
4 The authors were not aware of the details of the Nesl approach while designing and

implementing the SaC heap manager.

As soon as runtime performance is an issue (and in parallel processing it usu-
ally is), declarative programming languages often find themselves in a defensive
position. In machine-oriented programming languages one typically blames the
application programmer (rather than the C compiler, for instance) for unsatisfac-
tory performance. Frequently, additional effort and expert knowledge manage to
improve performance, albeit often at the expense of readability and portability.
Declarative programming languages raise the level of abstraction in program-
ming from a machine-oriented to a problem-oriented view. Yet, they need to
meet the programmer’s performance expectations. The more performance mat-
ters, the more difficult this is to achieve.

Automatic memory management plays a crucial role here because it is a
key feature of declarative languages and it must directly compete with manual
dynamic memory management or even static memory layouts used by machine-
oriented approaches. From the user’s perspective it is indistinguishable whether
unsatisfactory performance is caused by inefficiencies in compilation/parallelisa-
tion schemes or by false assumptions of an off-the-shelf memory allocator. The
bottom line is that it takes a fully integrated approach to be successful: code
generation needs to be well integrated with reference counting to directly reuse
memory as often as possible, and reference counting needs to be well integrated
with an underlying heap manager to reduce the overhead inflicted by remaining
allocations and de-allocations. Furthermore, the heap manager needs to be in-
tegrated with the multithreaded runtime system to avoid costly synchronisation
when concurrent threads access the implicitly shared heap.

References

1. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal 30 (2005)

2. Cann, D.: Retire Fortran? A Debate Rekindled. CACM 35 (1992)
3. Blelloch, G.E.: Programming Parallel Algorithms. CACM 39 (1996)
4. Scholz, S.B.: Single Assignment C — Efficient Support for High-Level Array Op-

erations in a Functional Setting. J. Functional Programming 13 (2003) 1005–1059
5. Grelck, C., Scholz, S.B.: SAC: A functional array language for efficient multi-

threaded execution. Intern. Journal of Parallel Programming 34 (2006) 383–427
6. Chakravarty, M.M.T., Leshchinskiy, R., Peyton Jones, S., Keller, G., Marlow, S.:

Data parallel haskell: a status report. In: Workshop on Declarative Aspects of
Multicore Programming (DAMP’07), Nice, France, ACM Press (2007)

7. Hudak, P., Bloss, A.: The Aggregate Update Problem in Functional Programming
Systems. In: 12th ACM Symposium on Principles of Programming Languages
(POPL’85), New Orleans, USA, ACM Press (1985) 300–313

8. Wilson, P.R., Johnstone, M.S., Neely, M., Boles, D.: Dynamic Storage Allocation: A
Survey and Critical Review. In: International Workshop on Memory Management
(IWMM’95), Kinross, UK. LNCS 986, Springer-Verlag (1995) 1–116

9. Milner, R., Tofte, M., Harper, R.: The Definition of Standard ML. MIT Press,
Cambridge, USA (1990)

10. Peyton Jones, S., Launchbury, J.: State in Haskell. Lisp and Symbolic Computation
8 (1995) 293–341

11. Smetsers, S., Barendsen, E., van Eekelen, M., Plasmeijer, M.: Guaranteeing Safe
Destructive Updates through a Type System with Uniqueness Information for
Graphs. University of Nijmegen, The Netherlands (1993)

12. Serrarens, P.: Implementing the Conjugate Gradient Algorithm in a Functional
Language. In: 8th International Workshop on Implementation of Functional Lan-
guages (IFL’96), Bonn, Germany. LNCS 1268, Springer-Verlag, (1997) 125–140

13. Cann, D., Evripidou, P.: Advanced Array Optimizations for High Performance
Functional Languages. IEEE Trans. on Parallel and Distributed Systems 6 (1995)

14. Grelck, C., Trojahner, K.: Implicit Memory Management for SAC. In: 16th Inter-
national Workshop on Implementation and Application of Functional Languages
(IFL’04), Lübeck, Germany (2004) 335–348

15. Grelck, C.: Shared memory multiprocessor support for functional array processing
in SAC. J. Functional Programming 15 (2005) 353–401

16. Sun Microsystems Inc.: A Comparison of Memory Allocators in Multiprocessors.
Solaris Developer Connection, Sun Microsystems Inc., Mountain View, USA (2000)

17. Gloger, W.: Dynamic Memory Allocator Implementations in Linux System Li-
braries. 4th International Linux Kongress (LK’97), Würzburg, Germany (1997)

18. Berger, E., McKinley, K., Blumofe, R., Wilson, P.: Hoard: A Scalable Memory Allo-
cator for Multithreaded Applications. In: 9th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS-IX),
Cambridge, USA. ACM Press (2000) 117–128

19. Shafarenko, A., et.al.: Implementing a numerical solution of the KPI equation using
Single Assignment C: lessons and experiences. In: Implementation and Application
of Functional Languages, 17th International Workshop (IFL’05), Dublin, Ireland.
LNCS 4015, Springer-Verlag (2006)

20. Grelck, C.: Implementing the NAS Benchmark MG in SAC. In: 16th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’02), Fort Laud-
erdale, USA, IEEE Computer Society Press (2002)

21. Grelck, C., Scholz, S.B.: Towards an Efficient Functional Implementation of the
NAS Benchmark FT. In: 7th International Conference on Parallel Computing
Technologies (PaCT’03), Nizhni Novgorod, Russia. LNCS 2763, Springer-Verlag
(2003) 230–235

22. Scholz, S.B.: With-loop-folding in SAC — Condensing Consecutive Array Oper-
ations. In: Implementation of Functional Languages, 9th International Workshop
(IFL’97), St. Andrews, UK. LNCS 1467, Springer-Verlag (1998) 72–92

23. Torellas, J., Lam, M., Hennessy, J.: False Sharing and Spatial Locality in Multi-
processor Caches. IEEE Transactions on Computers 43 (1994) 651–663

24. Lea, D.: A Memory Allocator. Unix/Mail 6/96 (1996)
25. van der Wijngart, R.: NAS Parallel Benchmarks Version 2.4. Technical Report

NAS-02-007, NASA Ames Research Center, Moffet Field, USA (2002)
26. Cann, D.C.: Compilation Techniques for High Performance Applicative Computa-

tion. Technical Report CS-89-108, Lawrence Livermore National Lab, Livermore,
USA (1989)

27. Blelloch, G., Chatterjee, S., Hardwick, J., Sipelstein, J., Zagha, M.: Implementation
of a Portable Nested Data-Parallel Language. Technical Report CMU-CS-93-112,
Carnegie Mellon University, Pittsburgh, USA (1993)

28. Blelloch, G., Chatterjee, S., Hardwick, J., Sipelstein, J., Zagha, M.: Implementation
of a Portable Nested Data-Parallel Language. Journal of Parallel and Distributed
Computing 21 (1994) 4–14

