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Part1

Trails Covering the Basics of SAC



Chapter 1

Running the first program

The following instructions will help you write your first SAC program.

1.1

A Checklist

To successfully write and run your first SAC program, you will need:

1.2

An ANSI C compiler, such as gcc. Though not needed directly, the SAC compiler relies on it.

The SaC compiler sac2c. It can be downloaded at http://www.sac-home. org; see instructions
in the Download section.

The SaC standard library can be downloaded from GitHub http://www.github.com/SacBase/
stdlib-core. The process of installation is described in README.md file of the stdlib repository.

Your favorite text editor, such as vi or emacs.

Create your first SAC Source File

Start your editor and type the following program:

use StdI0: all;
use Array: all;

int main ()
{
printf ("Hello World!\n");
return O;
}
Listing 1.1: Hello World

As you can see, it has a strong resemblance to C. The major difference are the module use dec-
larations at the beginning of the program. For now, it suffices to keep in mind, that these two use
declarations for most experiments will do the job.

In order to proceed, save this program into a file named world. sac.

1.3

Compile the Source File and Run the Program

The SAC compiler invocation is similar to the standard invocation of C compilers. A typical shell
session for compiling world.sac could be:


http://www.sac-home.org
http://www.github.com/SacBase/stdlib-core
http://www.github.com/SacBase/stdlib-core

$ cd /home/sbs/sac/

$ 1s

world. sac

$ sac2c world.sac

$ 1s

a.out a.out.c world. sac
$ a.out

Hello World!

Listing 1.2: Typical shell session

The compilation process consists of two steps. First, the SAC compiler generates a C file, which
then is compiled into target code by utilizing the system’s C compiler. If no target file name is specified,
the intermediate C file is named a. out. c so that the subsequent invocation of the C compiler creates
an executable named a. out.

In the same way the default target name a.out is borrowed from standard C compilers, the -o
option for specifying target names is adopted as well. For example, sac2c -o world world.sac
results in files world.c and world.

Note here, that the compiled program, depending on the operating system, is linked either statically
or dynamically. However, it does not require any further linking or interpretation.



Chapter 2

Array Programming Basics

This trail gives an introduction to the basic concepts of array programming in SAC. It consists of two
lessons: Arrays as Data and Shape-Invariant Programming. In the former lesson, the major differences
between arrays in SAC and arrays in more mainstream languages are explained. The lesson Shape-
Invariant Programming gives an introduction into the most important array operations available in SAC.
Based on these operations, several small examples demonstrate how more complex array operations
can be constructed by simply combining the basic ones.

2.1 Lesson 1: Arrays as Data

In SAC, arrays are the only data structures available. Even scalar values are considered arrays. Each
array is represented by two vectors, a so-called shape vector and a data vector. An array’s shape vector
defines its shape, i.e. its extent within each axis, and its dimensionality (or rank), which is given implicitly
by the shape vector’s length.

The section on Defining Arrays explains how arrays of various dimensionality can be defined in
SAC, and how they can be generated via nesting. Furthermore, some elementary notation such as
scalars, vectors, and matrices is defined.

The section on Arrays and Variables discusses the purely functional array model used in SAC.

2.1.1 Defining Arrays

In this section, several means for specifying arrays are explained.

In principle, all arrays in SAC can be defined by using the reshape operation. reshape expects two
operands, a shape vector and a data vector, both of which are specified as comma separated lists of
numbers enclosed in square brackets.

To get started, try the following program:

use StdIO0: all;
use Array: all;

int main ()

{
print (reshape ([5], [1,2,3,4,5]1));
print (reshape ([3,2], [1,2,3,4,5,6]));
print (reshape([3,2,1]1, [1,2,3,4,5,6]1));
return O0;

Listing 2.1: Defining Arrays I



It prints three arrays:
¢ an array of dimensionality 1 with 5 elements [1,2,3,4,5]
¢ an array of dimensionality 2 with 3 rows and 2 columns, and

¢ a 3-dimensional array with 3 elements in the leftmost axis, 2 elements in the middle axis, and one
element in the rightmost axis.

Note here, that the function print can be applied to arbitrary arrays. Besides printing its argument’s
dimensionality and shape, i.e. its shape vector, a more intuitive representation of the array’s data vector
is shown. However, as the terminal allows for 2 dimensions only, arrays of higher dimensionality are
interpreted as nestings of 2-dimensional arrays. Therefore, the 3-dimensional array is printed as a
2-dimensional array of vectors.

Exercise 1. In all these examples, the product of the shape vector matches the length of the data vector.
What do you expect to happen, if this condition does not hold?

For reasons of convenience, we use the following terminology:
scalar always denotes an array of dimensionality 0,

vector always denotes an array of dimensionality 1, and
matrix always denotes an array of dimensionality 2.

As all arrays can be defined in terms of reshape, the following program as well is perfectly legal:

use StdI0: all;
use Array: all;

int main ()

{
print (reshape ([1], [1]1));
print (reshape ([1, [11));
return O;

Listing 2.2: Defining Arrays II

The most interesting aspect of this program is the array defined in line 7. The empty shape vector
makes it a 0-dimensional array, i.e. a scalar. The data vector carries the scalar’s value, which, in this
example, is 1.

Exercise 2. The arguments of reshape are vectors, i.e. arrays of dimensionality 1. Can they be specified
by e expressions themselves?

The reshape notation is relatively clumsy, in particular, when being used for scalars. Therefore,
scalars and vectors can alternatively be specified by shortcut notations as well.
For experimenting with these, try the following:

use StdI0: all;
use Array: all;

int main ()
{
print (1);
print ([1,2,3,4,5]);
print ([[1,2], [3,4], [5,6]1]1);



print (genarray ([4,3,2], 1));
print (genarray ([4,3], [1,2]1));
return O;

Listing 2.3: Shortcut Notation for Arrays

From these examples, we can see that scalars can be used in the same way as in most programming
languages, and that the notation used for the parameters of reshape in the examples above in fact is
a standard abbreviation of SAC. The example in line 8 shows that nestings of arrays are implicitly
eliminated, i.e. the resulting array is identical to:

reshape([3,2], [1,2,3,4,5,6]).
For this reason, array nestings in SAC always have to be homogeneous, i.e. the inner array components
have to have identical shapes.

Furthermore, a new function is introduced: genarray. It expects two arguments, a shape vector
that defines the shape of the result and a default element to be inserted at each position of the result.
As shown in the example of line 10, the individual array elements can be non-scalar arrays as well,
which implicitly extends the dimensionality of the result array.

Exercise 3. Given the language constructs introduced so far, can you define an array that would print
as

Dimension: 3

Shape : < 5, 2, 2>
<0 0><0 0>
<1 0><0 0>
<0 1><0 0>
<0 0><1 0>
<0 0><0 1>

but whose definition does not contain the symbol ‘1’ more than once?

2.1.2 Arrays and Variables

This section explains why in SAC arrays are data and not containers for values as found in most other
languages.

So far, all examples were expression based, i.e. we did not use any variables. Traditionally, there
are two different ways of introducing variables. In conventional (imperative) languages such as
C, variables denote memory locations which hold values that may change during computation. In
functional languages, similar to mathematics, variables are considered place holders for values. As a
consequence, a variable’s value can never change. Although this difference may seem rather subtle at
first glance, it has quite some effects when operations on large data structures (in our case: large arrays)
are involved.

Let’s have a look at an example:

use StdI0: all;
use Array: all;

int main ()

{
a = [1’2,3,4];
print (a);

b = modarray(a, [0], 9);
print (b);



return O;

Listing 2.4: Variables as Placeholders

The function modarray expects three arguments: an array to be “modified”, an index that indicates
the exact position within the array to be “modified”, and the value that is to be inserted at the specified
position. As we would expect, the resulting array b is almost identical to a, only the very first element
has changed into 9.

Note here, that indexing in SAC always starts with index 0!

Referring to the container / place holder discussion, the crucial question is: does the variable a
denote a container, whose value is changed by modarray? If this would be the case, a and b would
share the same container, and every access to a after line 9 would yield [9,2,3,4]. If a in fact is a place
holder, it will always denote the array [1,2,3,4], no matter what functions have obtained a as an
argument.

To answer this question, you may simply shift the first call of print two lines down. As you can
see, in SAC, variables are indeed place holders.

A note for efficiency freaks:
You may wonder whether this implies that modarray always copies the entire array. In fact, it only
copies a if the place-holder property would be violated otherwise.

As a result of this place-holder property, it is guaranteed that no function call can affect the value
of its arguments. In other words, the underlying concept guarantees, that all functions are “pure”.
Although this helps in avoiding nasty errors due to non-intended side-effects, it sometimes seems
to be an annoyance to always invent new variable names, in particular, if arrays are to be modified
successively.

To cope with this problem, in SAC, variables do have a so-called scope, i.e. each variable definition
is associated with a well-defined portion of program code where its definition is valid. In a sequence of
variable definitions, the scope of a variable starts with the left-hand side of the subsequent variable
definition and either reaches down to the end of the function, or, provided at least one further definition
of a variable with the same name exists, to the right-hand side of the next such definition. This measure
allows us to reuse variable names. A slight modification of our example demonstrates the effect of
variable scopes in SAC:

use StdI0: all;
use Array: all;

int main ()

{
[1,2,3,4];

[
]

b modarray(a, [0], 9);
print(a);
a = b;

print (a);

a = modarray(a, [1], 8);
print(a);

return O;

Listing 2.5: Variable Scopes
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Here, the use of a on the right-hand side of line 9 still refers to the definition of line 6, whereas the
use in line 11 refers to the definition in line 10.

The definition in line 13 shows, how variable scopes can be used to specify code that looks very
much “imperative”. However, you should always keep in mind, that in SAC, the place-holder property
always holds!

Exercise 4. What result do you expect from the following SAC program?

use StdI0: all;
use Array: all;

int main ()

{
a = [1,2,3,4];
b = [a,a];
a = modarray (modarray(a, [0], 0), [1], 0);
b = modarray (b, [0], a);
print (b);
return O;
}

Listing 2.6: Scope Exercise

2.2 Lesson 2: Shape-Invariant Programming

The term shape-invariant programming refers to a programming style where all array operations are
defined in terms of operations that are applied to entire arrays rather than to individual array elements.
In order to realize such a programming style, it is an essential prerequisite to be able to apply functions
to arbitrarily shaped arguments. In SAC, this is the case.

All built-in array operations as well as all array operations supplied by the standard library can
be applied to arguments of arbitrary shapes. However, most of the operations that require more than
one argument do have certain restrictions with respect to which array shapes can be combined as
valid arguments. If an operation is applied to a set of arguments whose shapes constitute an illegal
combination, usually, a type error message is given. In cases where this cannot be decided statically,
the compiler may accept such a kind of domain error and produce a runtime error instead.

This lesson consists of three parts: The section on Standard Array Operations introduces the most
important standard array operations provided by the current SAC compiler release'. The next section
explains Axis Control Notation, a powerful but simple way of manipulating the focus of array operations
with respect to individual axes of argument arrays. With the axis-control notation, the basic operations
often can easily be combined into rather complex operations as demonstrated in the section on Putting
it all Together.

2.21 Standard Array Operations

In the sequel, several toy examples demonstrate the functionality of the most basic array operations that
come as part of the current SAC release. Their design is inspired by those available in APL. However,
several aspects — in particular regarding the treatment of special cases in APL — have been adjusted
to allow for a more favourable compilation in SAC that yields better runtime performance.

1 As of this writing, the latest SAC compiler release is version 1.2.1.
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A note for language design freaks:

You may have your own ideas on what primitive array operations should be available and how the
precise semantics of these should look like. Therefore, it should be mentioned here, that all array
operations introduced in the remainder of this section are not hard-wired into the language, but they
are defined in the module Array from the standard library. This is to say that the advanced SAC
programmer may write his own set of standard array operations.

The individual parts of this section are all organized according to the following scheme: first, a semi-
formal introduction to the functionality of individual operations is given. Then, several examples shed
some more light on the exact semantics of each operation by varying the argument-shape constellations
and by exploring “border-line cases” with respect to domain restrictions if these do exist’.

Basic Operations

The most basic operations are very close to the model of arrays in SAC. They comprise functions for
inspecting, creating, and modifying an array’s shape and content. If not stated otherwise, they are
applicable to arbitrarily shaped arguments of built-in element type. Note here, that some of them have
been introduced in earlier lessons already.

dim(a) returns the (scalar) dimensionality of the argument array a.
Domain restrictions: none.

shape(a) returns the shape vector of the argument array a.
Domain restrictions: none.

aliv] constitutes a short-cut notation for sel(iv, a). It selects the array element of a at index position
iv. As a may be of any shape, the index position is given as an index vector. The dimensionality
of the result is identical to the dimensionality of a minus the length of iv. Accordingly, its shape
is derived from the last components of the shape of a.
Domain restrictions:

e dim(iv) ==
¢ shape(iv) [[0]] <= dim(a)
e Vi€ {0,...,shape(iv) [[0]1} : iv[[i]] < shape(a) [[i]].
alivl=expr is a short-cut notation for an assignment of the form a = modarray(a, iv, expr). The
result of this application is a new array which is almost identical to a. Only the element (subarray)

at index position iv is different; it is replaced by expr.
Domain restrictions:

* dim(iv) ==

e shape(iv) [[0]] <= dim(a)

e Vi€ {0,...,shape(iv) [[011} : iv[[i]l] < shape(a)[[i]]
¢ shape(expr) == shape(aliv]).

reshape(shp, expr) computes an array with shape vector shp and data vector identical to that of expr.
Domain restrictions:

¢ dim(shp) ==
shape (shp) [[0]]-1 dim(expr)-1
o I shp[[i]l] = 11 shape (expr) [[1]].
i=0 i=0

genarray(shp, expr) generates an array of shape shp, whose elements are all identical to expr.
Domain restrictions: dim(shp) ==

Although these operations are fairly self-explaining or known from Lesson 2.1 on Arrays as Data,
let us have a look at a few example applications:

12



use StdIO0: all;
use Array: all;

int main ()

{
vect = [1,2,3,4,5,6,7,8,9,10,11,12];

mat = reshape([3,4], vect);
print (mat);

print (mat [[1,1]1]);
print (mat [[2]1]);
print (mat [[11);

mat [[1,1]1] = O;

print (mat);

mat [[2]] = [0,0,0,0];

print (mat) ;

mat [[]] = genarray([3,4], 0);
print (mat);

empty_vect = [];

print (empty_vect);

empty_mat = reshape([22,0], empty_vect);
print (empty_mat);

print (dim(empty_mat));

print (shape (empty_mat));

return O;

Listing 2.7: Basic Operations

The different selections in lines 11-13 show how the dimensionality of the selected element increases
as the length of the index vector decreases. If the index vector degenerates into an empty vector,
the entire array is selected. Similarly, the applications of modarray in lines 15-20 demonstrate the
successive replacement of individual elements, rows, or the entire array.

Lines 22-27 are meant to draw the reader’s attention to the fact that there exists an unlimited number
of distinct empty arrays in SAC!

Exercise 5. Assuming mat to be defined as in the previous example, what results do you expect from
the following expressions:

e reshape([3,0,5], [1)[[]1?

reshape([3,0,5], [1)[[1]11?

reshape([3,0,5], [1)[[1,0]1?

e mat [reshape([2,0], [1)]?

Element-wise Extensions

Most of the operations that can be found as standard operations on scalars in other languages are
applicable to entire arrays in SAC. Their semantics are simply element-wise extensions of the well-
known scalar operations. The binary operations in general do have some domain restrictions. First, the
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element types of both arguments do have to be identical. Furthermore, either one of the arguments has
to be a scalar value, or both arguments have to have identical shapes. In the former case, the value
of the scalar argument is combined with each element of the (potentially non-scalar) other argument,
which dictates the shape of the result. The latter case results in an array of the same shape as both
arguments are, with the values being computed from the corresponding elements of the argument
arrays.

In detail, the following operations are available:

arithmetic operations including addition (e; + ep), subtraction (¢; - e;), negation (-¢;), multiplica-
tion (e; * ep), and division (e; / ep). Furthermore, a modulo operation (e; % e2) is supported
on integer numbers.
Domain restrictions: the element types of e; and e, have to be of the same numerical type.

logical operations including conjunction (e; && ep), disjunction (e; || e;), and negation (!eq).
Domain restrictions: the element types have to be Boolean.

relational operations including less-than (e; < ep), less-or-equal (e; <= ep), equal (e; == e), not-
equal (e; !'= ep), greater-or-equal (¢; >= ep), and greater-than (e; > ¢2).
Domain restrictions: the element types of e; and e, have to be of the same type.

max (e, e2), min (e1, e2) compute the element-wise maximum and minimum, respectively.
Domain restrictions: the element types of e; and e, have to be of the same type.

where (p, ¢, €2) is an element-wise extension of a conditional. It expects p, €1, and e; either to have
identical shapes or to be scalar. If at least one of the three arrays is non-scalar, that shape serves
as shape of the result, whose values are taken from e; or ¢, depending on the value (s) of p.
Domain restrictions:

* the element type of p has to be boolean
* the element types of e; and ep have to be identical
e Jshp : ((shape(p) == shpVshape(p) == []1) A (shape(e_1) == shpVshape(e_1) == [])A
(shape(e_2) == shpV shape(e_2) == [1)).
Again, these operations are fairly self-explanatory. Nevertheless, we present a few examples:

use StdI0: all;
use Array: all;

int main ()
{
vect = [1,2,3,4,5,6,7,8,9];

mat = [vect, vect+10, vect+20];
print (mat) ;

mat2 = where(mat % 2 == 0, mat, -mat);
print (mat2);

print (max(mat2, 0));

return O;

Listing 2.8: Elementwise Extensions
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The most interesting part of this example is the definition of the matrix mat2 in line 11. The even
numbers from the matrix mat are taken as they are, whereas the odd numbers are negated. Note here,
that all sub expressions in predicate position are in fact non-scalar arrays: (mat \% 2) denotes a matrix
of zeros and ones and (mat \% 2) == 0 denotes a matrix of boolean values.

Exercise 6. What results do you expect from the following expressions:
e min(reshape([3,0,5], [1), 42)?
¢ reshape([3,0,5], []) + reshape([3,0,5], [1)?

¢ reshape([1,1], [1]) + reshape([1], [11)?

Restructuring Operations

The operations to be introduced here do not compute new values at all. Instead, they are meant to
create slightly differently structured arrays from existing ones. Therefore, they are applicable to arrays
of all built-in element types.

take(sv, a) takes as many elements from the array a as indicated by the shape vector sv. Each element

of sv corresponds to one axis of a starting from the leftmost one. For positive components of
sv, the elements are taken from the “beginning”, i.e. starting with index 0, otherwise they are
taken from the “end” including the maximum legal index of the corresponding axis. All axes of a
where there exists no corresponding element in sv are taken entirely.
Domain restrictions:

* dim(sv) ==

¢ shape(sv) [[0]] <= dim(a)

e Vi €{0,...,shape(sv) [[0]]1}:sv[[i]] <= shape(a)[[i]]

drop(sv, a) drops as many elements from the array a as indicated by the shape vector sv. Each element
of sv corresponds to one axis of a starting from the leftmost one. For positive components of sv,
the elements are dropped from the “beginning”, i.e. starting with index 0, otherwise they are
dropped from the “end” starting from the maximum legal index of the corresponding axis. All
axes of a where there exists no corresponding element in sv are left untouched.
Domain restrictions:

¢ dim(sv)= 1
¢ shape(sv) [[0]] <= dim(a)
e Vi {O, ...,shape(sv) [[0]] } :sv[[i]] <= shape(a) [[i]]
tile(sv, ov, a) takes a tile of shape sv from a starting at the index specified by the offset vector ov. For
axes where no values of sv or ov are specified these are assumed to be identical to the extent of a

along that axis or 0, respectively.
Domain restrictions:

dim(sv) == dim(ov) ==

shape(sv) [[0]] <= dim(a)

shape (ov) [[0]] <= dim(a)

Vi € {0,...,shape(ov) [[0]]1} : ov[[i]] <= shape(a) [[i]]

e] ++ ey concatenates arrays e; and ep with respect to the leftmost axis. As in SAC all arrays are
homogeneous, this requires all but the leftmost axis to be of identical extent.
Domain restrictions:

15
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* ¢1 and e; have to be of identical element type

e drop(1l, shape(e;)) == drop(l, shape(e)).

rotate(ov, a) rotates the array a with respect to those axes specified by the offset vector ov. Starting
from the leftmost axis, the elements of ov specify by how many positions the elements are rotated
towards increasing indices (positive values) or towards decreasing indices (negative values).
Domain restrictions:
* dim(ov) ==

¢ shape(ov) [[0]] <= dim(a)

shift(ov, expr, a) shifts the array a with respect to those axes specified by the offset vector ov. The
element positions that become “void” are filled by the (scalar) default element expr. Again,
depending on the sign of the values of ov the elements are either shifted towards increasing or
decreasing indices.
Domain restrictions:

e dim(ov) ==
¢ shape(ov) [[0]] <= dim(a)
® shape (expr) [[0]] == []

A few examples:

use StdIO0: all;
use Array: all;

int main ()
{
vect = [1,2,3,4,5,6,7,8,9];

mat = [vect, vect+10, vect+20];
print (mat);

print (take ([2,-2], mat));

print (take ([2], mat));

print (take ([1, mat));

print (take ([0], mat));

print (take ([2, 0], mat));

print (take ([2], reshape([3,0,5], [1)));
print (drop ([0, -1], mat));

print (mat ++ mat);

print (rotate([-1, 42], mat));
print (rotate ([ 1], mat));

print (shift ([0, -2], O, mat));
print (shift ([0, -22], O, mat));
print (shift ([1], 0, mat));

return O;

Listing 2.9: Restructuring Operations
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The applications of take in lines 11-13 demonstrate, how the dimensionality of mat remains unaf-
fected by the length of the first argument. Only the shape of the result and the “side” from which the
elements are taken is defined by it.

The applications in lines 15-17 demonstrate how empty arrays are dealt with in the individual
argument positions. In particular from the example in line 17 it can be seen how well the concept of
having an unlimited number of different empty arrays available fits nicely into the overall framework.

The remaining examples are rather straightforward. The only aspect of interest here may be the
“overflows” in the rotation and shift parameters in lines 24 and 28, respectively.

Exercise 7. Which of the following expressions can be reformulated in terms of take, ++, and the basic
operations defined in the previous parts?

® drop (v, a)?

e tile (v, o, a)?

e shift ([n], e, a)?

e shift ([m,nl, e, a)?
® rotate ([n], a)?

® rotate ([m,n], a)?

Can we define the general versions of shift and rotate as well?

Reduction Operations

The library of standard array operations that comes with the current SAC release also contains a set of
functions that fold all (scalar) elements of an array into a single one. The most common ones of these
are described here.

sum(a) sums up all elements of the array a. If a is an empty array, 0 is returned.
Domain restrictions: the element type has to be numerical.

prod(a) multiplies all elements of the array a. If a is an empty array, 1 is returned.
Domain restrictions: the element type has to be numerical.

all(a) yields true, iff all elements of a are true. If a is an empty array, true is returned.
Domain restrictions: the element type has to be boolean.

any(a) yields true, iff at least one element of a is true. If a is an empty array, false is returned.
Domain restrictions: the element type has to be boolean.

maxval(a) computes the maximum value of a. If a is an empty array, the minimal number of the
according element type is returned.
Domain restrictions: the element type has to be numerical.

minval(a) computes the minimum value of a. If a is an empty array, the maximal number of the
according element type is returned.
Domain restrictions: the element type has to be numerical.

A few examples:

use StdIO0: all;
use Array: all;

int main ()

{
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vect = [1,2,3,4,5,6,7,8,9];
mat = [vect, vect+10, vect+20];

print (sum(mat));
print (prod(vect));
print (all(mat >= 1));
print (any(mat > 1));
print (maxval (mat));
print (minval (mat));

return O;

Listing 2.10: Reduction Operations

Most of these examples, again, are fairly self explanatory. However, you may get an idea of the
specificational advantages of shape-invariant programming when having a closer look at lines 12
and 13. They demonstrate the rather intuitive style of program specifications that results from it.

Exercise 8. All operations introduced in this part apply to all elements of the array they are applied to.
Given the array operations introduced so far, can you specify row-wise or column-wise summations
for matrices? Try to specify these operations for a 2 by 3 matrix first.

2.2.2 Axis Control Notation

As can be seen from Exercise 8, without further language support, it is rather difficult to apply an array
operation to certain axes of an array only. This section introduces two language constructs of SAC
which, when taken together, can be used to that effect. While Generalized Selections are convenient for
separating individual axes of an array, Set Notations allow to recombine such axes into a result array
after applying arbitrary operations to them. However, as the two constructs in principle are orthogonal,
we introduce them separately before showing how they can be combined into an instrument for Axis
Control.

Generalized Selections

The selection operation introduced in Section 2.2.1 does not only allow scalar elements but entire
subarrays of an array to be selected. However, the selection of (non-scalar) subarrays always assumes
the given indices to refer to the leftmost axes, i.e. all elements with respect to the rightmost axes are
actually selected. So far, a selection of arbitrary axes is not possible. As an example use-case consider
the selection of rows and columns of a matrix. While the former can be done easily, the latter requires
the array to be transposed first.

To avoid clumsy notations, SAC provides special syntactical support for selecting arbitrary subar-
rays called Generalized Selections. The basic idea is to indicate the axes whose elements are to be selected
entirely by using dot-symbols instead of numerical values within the index vectors of a selection
operation.

Note here, that vectors containing dot-symbols are not first class citizens of the language, i.e. they
can exclusively be specified within selection operations directly!

There are two kinds of dot-symbols, single-dots which refer to a single axis and triple-dots which
refer to as many axes as they are left unspecified within a selection. In order to avoid ambiguities, a
maximum of one triple-dot symbol per selection expression is allowed.

A few examples:

use StdI0: all;
use Array: all;
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int main ()

{
vect = [1,2,3,4,5,6,7,8,9];
mat = [vect, vect+10, vect+20];
print (mat);
print (mat [[11]);
print (mat[[1,.]11);
print (mat [[1,...]1]1);
print(mat [[.,1]11);
print(mat [[...,1]1]1);
print(mat [[1,...,1]1]);
arr3d = [mat, mat];
print (arr3d);
print (arr3d[[.,1]1]1);
print (arr3d[[...,1]1]1);
return O;

}

Listing 2.11: Generalized Selections

The examples in lines 11-13 demonstrate different versions for selecting the second row of the
matrix mat. However, as the rightmost axis is to be selected, a dot-free version (cf. line 11) suffices for
this task. The selection of the second column of mat is shown in lines 15 and 16.

line 18 demonstrates that the triple-dot notation can also be successfully applied if no axis can be
matched at all.

The difference between the single-dot and the triple-dot notation is shown in lines 23 and 24. While
the selection in line 23 is identical to arr3d[[.,1,.]], the one in line 24 is identical to arr3d[[.,.,1]].

Only in cases where the number of single-dots plus the number of numerical indices exceeds the
number of axes available, an error message will be generated.

Exercise 9. How can a selection of all elements of mat be specified using generalized selections? Try to
find all 9 possible solutions!

Exercise 10. Referring to Exercise 5, can this new notation be used for selecting “over” empty axis? For
example, can you specify a selection vector (vec), so that reshape ([3,0,5], [1)[vec] == reshape ([3,0], [1)
holds?

Set Notation

The means for composing arrays that have been described so far are rather restricted. Apart from
element-wise definitions all other operations treat all elements uniformly. As a consequence, it is
difficult to define arrays whose elements differ depending on their position within the array. The
so-called set notation facilitates such position dependent array definitions. Essentially, it consists of a
mapping from index vectors to elements, taking the general form

(index_vector)-> (expression)
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where (index_vector) either is a variable or a vector of variables and (expression) is a SAC expression
that refers to the index vector or its components and defines the individual array elements. The range
of indices this mapping operation is applied to usually can be determined by the expression given and,
thus, it is not specified explicitly.

A note for language design freaks:

You may wonder why we restrict the expressiveness of the set notation by relying on compiler
driven range detection rather than an explicit range specification. The reason for this decision is the
observation that in many situations the capabilities of the set notation suffice whereas an explicit
specification of ranges would obfuscate the code.

Furthermore, as you will see in Chapter 4, SAC provides a more versatile language construct for
defining arrays. However, the expressiveness of that construct comes for quite some specificational
overhead.

Let us have a look at some examples:

use StdIO0: all;
use Array: all;

int main ()

{
vect = [0,1,2,3,4,5,6,7,8,9];

mat = {[i] -> vect[[i]]*10+vect};
print (mat);

mat_inc = {iv -> mat[iv] + 1};
print (mat_inc);

mat_trans = {[i,j] -> mat[[j,i11};
print (mat_trans);

mat_diag = {[i,j] -> where(i == j , mat[[i,jl] , 0)};
print (mat_diag);

return O;

Listing 2.12: Basic Set Notation

The set notation in line 8 defines a vector whose components at position [i] are vectors that are
computed from adding a multiple of 10 to the vector vect. The legal range of i is derived from the
selection vect [[1]] yielding in fact a matrix with shape [10,10]. An explicit element-wise increment
operation is specified in line 11. Since the operation does not need to refer to individual axes a variable
iv is used for the entire index vector rather than having variables for individual index components.
Line 14 shows how the matrix can be transposed, and line 17 changes all non-diagonal elements to 0.

Exercise 11. Which of these operations can be expressed in terms of the array operations defined so
far?

Exercise 12. What results do you expect if mat is an empty matrix, e.g. reshape ([10,0], [1)?

As we can see from the set notation in line 8, non-scalar expressions within the set notation per
default constitute the inner axes of the result array. This can be changed by using *.” symbols for
indicating those axes that should constitute the result axis.

A few examples:
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use StdIO0: all;
use Array: all;

int main ()

{
vect = [0,1,2,3];

mat = {[.,i] -> vect[[i]ll*4 + vect};
print (mat);

arr3d = {[i] -> vect[[i]]%*16 + mat};
print (arr3d);

arr3d = {[.,.,i] -> vect[[i]]*16 + mat};
print (arr3d);

arr3d = {[.,i] -> vect[[i]]*16 + mat};
print (arr3d);

return O;

Listing 2.13: Advanced Set Notation

These examples show how the result of evaluating the expression on the right of the arrow can be
directed into any axes of the overall result array. As can be seen in line 17, the axes of the expressions
can even be put into non-adjacent axes of the result.

Exercise 13. The *.” symbol in the set notation allows us to direct a computation to any axes of the
result. This is identical to first putting the result into the innermost axes and then transposing the result.
Can you come up with a general scheme that translates set notations containing *.” symbols into set
notations that do without?

Axis Control

Although generalized selections and the set notation per se can be useful, their real potential shows
when they are used in combination. Together, they constitute means to control the axes a given
operation is applied to. The basic idea is to use generalized selections to extract the axes of interest,
apply the desired operation to the extracted subarrays and then recombine the results to the overall
array.

For example, we can now easily sum up the individual rows or columns of a matrix:

use StdIO0: all;
use Array: all;

int main ()
{
vect = [0,1,2,3,4,5,6,7,8,9];

mat = {[.,i] -> vect[[i]]l*10+vect};
print (mat);

sum_rows = {[i] -> sum(mat[[i]1)};
print (sum_rows);
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sum_cols = {[i] -> sum( mat([[.,il]1)};
print (sum_cols);

return O;

Listing 2.14: Axis Control: sum

Reduction operations, in general, are prone to axis control, as they often need to be applied to
certain particular axes rather than entire arrays. Other popular examples are the maximum (maxval)
and minimum (minval) operations:

use StdIO0: all;
use Array: all;

int main ()

{
vect = [0,1,2,3];

arr3d = {[i,j] -> vect[[i]]*4 + vect[[jl]l*16 + vect};
print (arr3d);

max_inner_vects = {[i,j] -> maxval(arr3d[[i,jl])};
print (max_inner_vects);

max_inner_arrays = {[i] -> maxval(arr3d[[i]])};
print (max_inner_arrays);

max_outer_arrays = {[i] -> maxval(arr3d[[.,.,i]11)};
print (max_outer_arrays);

return O;

Listing 2.15: Axis Control: max

In line 8, we directly generate a 3 dimensional array from the vector vect. Lines 11, 14, and 17
compute maxima within different slices of that array. max_inner_vects is a matrix containing the
maxima within the innermost vectors, i.e. the 3-dimensional array is considered a matrix of vectors
whose maximum values are computed. For max_inner_arrays, the array is considered a vector of
matrices; it contains the maximum values of these subarrays. The last example demonstrates, that
outer dimensions can be considered for reduction as well.

Further demand for axis control arises in the context of array operations that are dedicated to one
fixed axis (usually the outermost one) and that need to be applied to another one. Examples for this
situation are the concatenation operation (++) and reverse:

use StdIO0: all;
use Array: all;

int main ()

{
vect = [0,1,2,3];

arr3d = {[i,j] -> vect[[i]]*4 + vect[[jl]l*16 + vect};
print (arr3d);
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print (arr3d ++ arr3d);

print ({[i]
print ({[i, j]

-> arr3d[[i]] ++ arr3d[[il]});

-> arr3d[[i,jl] ++ arr3d[[i,j11});

print (reverse( arr3d));

print ({ [i]
print ({ [i,j]

-> reverse(arr3d[[i]])});
-> reverse (arr3d[[i,jl11)});

return O;

Listing 2.16: Axis Control: ++, reverse

Line 11 shows a standard application of the concatenation of two arrays. It affects the outermost
axis only, resulting in an array of shape [8, 0, 0]. The two subsequent lines show, how to apply
concatenation to other axis. Essentially, the selections on the right hand sides select the sub expressions
to be concatenated and the surrounding set notation glues the concatenated subarrays back together
again.

The examples in lines 15-17 show the same exercise for the operation reverse which reverses the
order of the elements within an array with respect to the outermost axis.

Exercise 14. The operation take is defined in a way that ensures inner axes to be taken completely in
case the take vector does not provide enough entities for all axes. How can take be applied to an array
so that the outermost axis remains untouched and the selections are applied to inner axes, starting at
the second one? (You may assume, that the take vector has fewer elements than the array axes!) Can
you specify a term that — according to a take vector of length 1 — takes from the innermost axis only?

Exercise 15. Can you merge two vectors of identical length element-wise? Extend your solution in a
way that permits merging n-dimensional arrays on the outermost axis.

2.2.3 Putting it all Together

The array operations presented so far constitute a substantial subset of the functionality that is provided
by array programming languages such as APL. When orchestrated properly, these suffice to express
rather complex array operations very concisely. In the sequel, we present two examples that make use
of this combined expressive power: matrix product and relaxation.

Matrix Product

The matrix product of two matrices A and B (denoted by A ® B) is defined as follows:

Provided A has as many columns as B has rows, the result of A ©® B has as many rows as A and as
many columns as B. Each element (A ® B)i,]- is defined as the scalar product of the i-th row of A and
the j-th column of B, i.e. we have (A ® B); i = Y. A * By .

This definition can directly be translated into the following SAC code:

use StdI0: all;

use Array: all;

int main ()

{
id = [[1d, od, o0d], [0od, 14, 0d]l, [0d, 0d, 141];
vect = [1d, 24, 34, 4d];
mat = [vect, vect+4d, vect+8d];

print (mat);
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res = {[i,j] -> sum(id[[i,.]] * mat([[.,j11)};
print (res);

return O;

Listing 2.17: Matrix Product

After defining two matrices id and mat in lines6 and 8, respectively, the matrix product id ® mat
is specified in line 12. id[[i, .]] selects the i-th row of id and mat [[.,j]1] refers to the j-th column
of mat. The index ranges for i and j are deduced from the accesses into id and mat, respectively. A
variable k as used in the mathematical specification is not required as we can make use of the array
operations * and sum.

Relaxation

Numerical approximations to the solution of partial differential equations are often made by applying
so-called relaxation methods. These require large arrays to be iteratively modified by so-called stencil
operations until a certain convergence criterion is met. Fig. 2.1 illustrates such a stencil operation. A

4/8

Figure 2.1: A 5-point-stencil relaxation with cyclic boundaries

stencil operation re-computes all elements of an array by computing a weighted sum of all neighbor
elements. The weights that are used solely depend on the positions relative to the element to be
computed rather than the position in the result array. Therefore, we can conveniently specify these
weights by a single matrix of weights as shown on the left side of Fig. 2.1.

In this example, only 4 direct neighbor elements and the old value itself are taken into account for
computing a new value. (Hence its name: 5-point-stencil operation). As can be seen from the weights, a
new value is computed from old ones by adding an eight-th each of the values of the upper, lower, left,
and right neighbors to half of the old value.

As demonstrated on the right side of Fig. 2.1 our example assumes so-called cyclic boundary conditions.
This means that the missing neighbor elements at the boundaries of the matrix are taken from the
opposite sides as indicated by the elliptic curves.

In the sequel, we concentrate on the specification of a single relaxation step, i.e. on one re-
computation of the entire array. This can be specified as a single line of SAC code:

use StdIO0: all;
use Array: all;

int main ()
{
weights = [[0d, 1d, 0d4], [1d, 44, 1d4], [ od, 1d, 0d4]] / 84d;

vect = [1d, 2d, 3d, 44d];
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mat = [vect, vect+4d, vect+8d, vect+12d];
print (mat);

mat = {[i,j] -> sum({ iv -> weights[iv] * rotate(iv-1, mat)}[[...

print (mat);

return O;

Listing 2.18: Relaxation with Cyclic Boundaries

Line 6 defines the array of weights as given on the left side of Fig. 2.1. Our example array is
initialized in lines 8-9. The relaxation step is specified in line 12. At its core, all elements are re-
computed by operations on the entire array rather than individual elements. This is achieved by
applying rotate for each legal index position iv into the array of weights weights. Since the expres-
sion {iv -> weights[iv] * rotate(iv-1, mat)} computes a 3 by 3 array of matrices; the reduction
operation sum needs to be directed towards the outer two axes of that expression only. This is achieved
through axis control using a selection index [\dots, i, j] within a set notation over i and j.

Exercise 16. Another variant of relaxation problems requires the boundary elements to have a fixed
value. Can you modify the above solution in a way that causes all boundary elements to be 0? [Hint:
You may consider the boundary elements to actually be located outside the matrix]
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Chapter 3

Basic Program Structure

This trail gives a brief introduction into the main language constructs most of which have been adopted
from standard C. We assume some familiarity with standard C and, therefore, only give a quick
overview and highlight the differences between SAC and C.

3.1 Lesson 3: Functions and their Types

3.1.1 Function Definitions

Like in other modern programming languages functions constitute the main form of structuring
programs in SAC. SAC functions very much resemble their C counterparts. The most prominent
difference is that SAC functions can have multiple return values, as illustrated in the following
example.

use ScalarArith: all;

int, int divmod(int x, int y)
{

return (x / y, x % y);
}

int main ()

{
d, m = divmod (8, 3);
return d;

Listing 3.1: Function definitions

A function with multiple return values, like divmod in the above example, has a comma-separated
list of return types in front of the function name and the return-statement likewise contains a comma-
separated list of expressions. Obviously both lists must coincide in length to make up a well-formed
program. Functions with multiple return values cannot appear in expression positions in SAC, but
their results need to be directly assigned to identifiers as illustrated above.

Exercise 17. Extend the above example program to compute the greatest common denominator of two
numbers using Euclid’s algorithm. In particular, use the function divmod.

Exercise 18. What happens, if you use the same variable name for both results of divmod?
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3.1.2 Built-in Types

SAC supports all basic types of standard C such as int, float, double, char etc.

A note for bit freaks:

All basic types are mapped one-to-one to their C counterparts and, hence, the same rules apply to
them in SAC as in C. As a consequence of this, the concrete bit widths used for representation and,
hence, the range of values for integer types are platform-dependent. Although this may be considered
undesirable we find it acceptable from a compatibility-with-C perspective.

In addition to the C-inhereted types, SAC supports three more basic types: the boolean type bool
and the integer type byte, both signed and unsigned. Although these are internally mapped to the
same C type, on the level of SAC, there is a strict separation between them. Neither can be used in
places where the other is expected. This separation also applies to the standard C types which rules
out tacit coercions as one would find them in C or JAVA.

A note for language design freaks:

The reader may wonder why we enforced this strict separation. The reason is two-fold: First, it
prevents from accidental coercions and second, it makes type-inference more accessible for the user in
the absence of explicit type declarations. Just imagine an overloading of a function foo for integer
and double arguments which would yield different results depending on the type of arqument. If we
had implicit coercions in place it would be completely unclear how the result of foo (0) would be
computed!

As a consequence of this strict separation, programmers need to apply some rigor when it comes to
specifying constant values. They have to be attributed with the appropriate suffixes to indicate the
desired runtime representation. Note here, that we adopted the suffixes and default rules from C. Here
a few examples:

use StdIO0: all;
use Array: all;

bool foo(double x)
{

return true;

bool bar(float x)
{

return false;

int main ()

{
/* Type error: foo 4is not defined on int! */
a = foo(0);

/* Correct calls: */
a = f0o0(0.0);
a = foo(0d);

/* Type error: bar is not defined on double! */
a = bar(0.0);
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/* Correct calls: */
a = bar(0f);
a = bar(0.0f);

return O;
b
Listing 3.2: Element-Type segregation

Exercise 19. How can you modify the above program in a way that allows the programmer by a
simple define to switch the argument type of foo between float and double and all the calls to foo
accordingly?

[Hint: Use the C preprocessor to make the necessary modifications]

3.1.3 Subtyping

For each basic type there is an entire hierarchy of array types that specify the shape of an array
(remember that any expression in SAC denotes an array) at different levels of accurateness. Using type
int as a running example, int itself denotes an integer array with rank zero, the empty vector [] as
shape vector and a single element, in other words the equivalent of a scalar value. Then, there are (real)
array types denoting arrays of rank greater than zero, e.g. int [4] denotes a 4-element vector while
int [10,20] denotes a 10 by 20 element matrix.

Whereas all these types specify exact shapes, SAC also features types that solely denote the rank
of some array, but leave the concrete shape open, e.g. int [.] describes the type of all integer vectors
(of any length) and int[.,.] is the type of all integer matrices. In order to support rank-invariant
programming, SAC, furthermore, has types that not only abstract from concrete shapes but even from
concrete ranks. These are int [*] which is the type of all integer arrays of any rank and shape, including
rank-zero arrays (usually referred to as scalars) and int [+], the type of all “true” integer arrays, i.e.
arrays of rank greater than zero.

SAC defines a subtype relationship between array types in the obvious way. Figure 3.1 shows this
relationship for arrays of integer elements in a graphical form. Whenever two types are in subtype

int [*]
int[.] int[.,.] int[.,.,.]1 "
int int[l]\int[4] int[7,2]\int[2,9]--- int[9,8,11] - --

Figure 3.1: The hierarchy of array types of integer elements.

relationship they are connected by a line. For example, int[+] is a subtype of int [*], int[.] and
int[.,.] are both subtypes of int [+] and int [12] and int [42] are subtypes of int[.]. As we can
see, the subtyping hierarchy of SAC has exactly four levels.

3.1.4 Function Overloading

The real power of subtyping unfolds when it is combined with function overloading. It allows
programmers to specify multiple functions of the same name, as long as they differ in the types or their
arguments. Which definition is chosen for any given application of such a function depends on the
type of the actual arguments. This combines a high degree of code reuse with the ability to later add
special definitions for a few special cases.
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A note for OO-freaks:

This can be seen as a more general form of inheritance. If you restrict overloading to one argument only,
say the first one, it equates to inheritance in OO languages. However, the overloading of SAC is much
more powerful. Not only does it support inheritance on all arguments but it also supports overloading
across different types. These features render several of the well-known OO programming pattern such
as the visitor pattern superfluous in SAC. Instead, the desired overloading can be specified directly.

Here, an example for element-type overloading:

use ScalarArith: all;
use StdI0: all;

int twice(int x)
{

return 2 * x;

double twice(double x)
{

return 2.0 *x x;

int main ()

{
a = twice(5);
print (a);

b = twice(5.9);
print (b);

return O;

Listing 3.3: Function overloading

When utilising the overloading on our hierarchy of array types we can even achieve a pattern
matching like programming style as demonstrated in the next example. Here, we have three instances
of the function quicksort, one for vectors of any length, one for vectors of length one and one for
empty vectors. The latter two boil down to the identity function. As a result we can safely access
the first element of the argument vector v in the general instance because any argument vector is
guaranteed to have at least two elements.

int[.] quicksort(int[.] v)
{

pivot = v[[1]];

VA 4

int [1] quicksort(int[1] v)
{

return v;

int [0] quicksort(int [0] V)
{
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return v;
Listing 3.4: Overloading as pattern matching.

Exercise 20. In a C program, functions like + can be applied to arbitrary combinations of integer
and double arguments. Try to mimic that behaviour in SAC by defining a function cPlus and by
overloading it appropriately.

Exercise 21. In OO languages inheritance cannot always be statically resolved. This leads to what is
referred to as dynamic dispatch, i.e. the disambiguation of function calls at runtime. Is that required in
SAC too? If so, can you come up with an example program that demonstrates this?

3.2 Lesson 4: Function Bodies

3.2.1 Variable Declarations

Local variables within bodies of SAC functions are typically not declared (in contrast to C), but the SAC
compiler infers proper types for local variables or yields an appropriate error message. Nevertheless, it
is syntactically legal to add explicit variable declarations in SAC in exactly the same way as in C.

There is one difference to C, however: While C allows local variable declarations at the beginning
of each code block and in the latest C99 standard instructions and declarations can even be interleaved,
SAC only supports variable declarations on the level of function bodies, and they must precede any
instruction.

Exercise 22. Rewrite your solution to computing the greatest common denominator of two numbers
from the previous exercise such that each subexpression is assigned to an identifier, i.e. flatten any
nested expression. Then add explicit variable declarations for each local variable used.

Exercise 23. The previous exercise only used scalar types, more precisely int. What happens if you
replace int in all variable declarations by its supertype int [*]?

3.2.2 Assignments

As we have already seen in the previous trails, SAC allows for C-style assignments to variables. In
contrast to C, assignments cannot be placed within expression positions and the comma-operator of C
is not supported. However, the combinations of operators and assignment are the same in SAC as in C

use Array: all;
use StdI0: all;

int main ()
{

a = 42;

print (a);

at++;
print (a);
a += 5;
print (a);
a -= a;
print (a);

v = [1,2’3’4:5];

print (v);
v += 1;
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print (v);
v[0] = 0;
print (v);

m = [v,v,v];
print (m);
m++;

print (m);

return a;

Listing 3.5: Operator assignments in SaC

Note that despite the term “Single Assignment” in the name of SAC, the language actually supports
repeated assignment of values to the same variable as in the above example. This seeming contradiction
can be explained as follows: Each assignment opens up a new scope of an identifier bound to some
value. Accordingly, the second assignmnent to a in the above example opens up a new scope for a
new identifier a that only coincidentally carries the same name as the identifier introduced in the code
line before. However, because these two variables do carry the same name, the second assignment
shadows the scope of the first assignment meaning that no access to the first a is possible any more.

Another aspect to notice here is that these operator-assignment combinations in SAC can be used
on arbitrary types. Line 17 is an example for this flexibility. The variable v is of type int [5] and thus
+= works on vectors. The way this works is that all these operator assignment cases are considered
syntactic sugar for assignements with function applications on the righ hand side.

This syntactic-sugar trick also enables very C-like notations when denoting applications of the
function modarray. Line 19 shows an example.

Exercise 24. Starting from the code in Listing 3.5, what happens when you combine the above shortcut
notations? Try operator assignments such as v[0]++ or m[0] [0] = 42;.
Can you define a function £ that makes the following operator assignment legal SAC code: v[1], m[1] +=£();?

3.2.3 Conditionals

In SAC, we support three forms of conditionals:
¢ branching with consequence only (if-then),
¢ branching with consequence and alternative (if-then-else) and
¢ conditional expressions.

All three forms use a syntax that is identical to that of C, as the following listing illustrates. Similarity
with C extends to the use of curly brackets to build blocks of multiple statements and their potential
absence if the condition covers a single statement only

use ScalarArith: all;
use StdI0: all;

int main ()
{
a = 5;
b =7;
printf ("a=%d, b=%d\n", a, b);

if (a < b) a = b;
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printf ("a=%d, b=%d\n", a, b);

if (a >= b) {

a = b;
} else {
b = a;

}
printf ("a=%d, b=%d\n", a, b);

b =a<b? a: b;
printf ("a=%d, b=%d\n", a, b);

return b;

Listing 3.6: Conditionals in SaC

As in C all forms of conditionals can be nested in any way, and the dangling else ambiguity is
resolved as in C proper.

A small difference to standard C is that the predicate expression of any conditional must be of type
bool. There is no implicit treatment of integer values as predicates. Another subtle difference to C
stems from the functional nature of SAC: a variable defined only in one branch of a conditional, will
cause the SAC compiler to raise an error because the value may be undefined.

The switch-statement of C is currently not supported by SAC. This is not so much motivated by
conceptual concerns, but rather by pragmatic considerations like the ratio between expressiveness
gained and implementation effort caused.

3.24 Loops

SAC supports all three loop constructs of standard C: while, do and for with the familiar syntax, as
illustrated by the following code fragment.

use ScalarArith: all;
use StdIO0: all;

int main ()

{
a = 10;

while (a > 0) {
a = a - 2;
print(a);

}

do {
print(a);

a =a + 1;

} while (a < 7);

for (i =1, j = 2; i + j < 42 ; i++, j++) {
a *= 2;
print(a);

}
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return a;
}
Listing 3.7: Loops in SaC

In analogy to conditionals, the loop predicate expression must be of type bool. Note that SAC does
even support the comma operator in for-loops (though not in general terms as pointed out before).

These C-style loop constructs can make code look very imperative. Despite these syntactic similari-
ties, always bear in mind that SAC loops are (only) syntactic sugar for equivalent tail-end recursive
functions. While the functional semantics almost completely coincides with the pragmatic expectations
of a C programmer, some subtle issues may arise concerning the definedness of variables. For example,
the SAC compiler would complain about the above example saying that the variable b in the while-loop
may be used uninitialised if it is not defined before. This is because the compiler assumes that the body
of a while-loop may not be executed at all. Of course, you may know better, but the SAC compiler at
the moment makes no particular effort to prove this fact when it analyses the definedness of variables.

3.2.5 Explicit Control Flow Manipulation

The control flow manipulation statements of C, i.e. goto, break and continue, as well as labels are not
supported by SAC. This is due to the fact that SAC is indeed a functional language and as such there is
actually no control flow, even though the C-like syntax suggests one.

3.3 Lesson 5: Advanced Topics

3.3.1 User-defined Types
SAC allows programmers to define their own types using a syntax that is identical to C.

use StdI0: all;

typedef int myint;
typedef float[100,100] real_matrix;
typedef double[2] complex;

int main ()

{
complex c;
double [2] d;

c (complex) [1.2,2.3];
d (double [2]) c;
print (d);

return O;

}
Listing 3.8: User-defined types

Following the keyword typedef we have the defining type followed by the defined type name.
Note that in contrast to C, defining type and defined type are not considered synonyms. Types
like double[2] and complex are distinguished properly and a function that expects a value of type
double[2] as an argument will not accept a value of type complex instead.

SAC requires explicit type casts to change the type of a value from the defining type to the defined
type or vice versa as in the following example.
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Note that for the time being any defining type in a type definition must exactly specify some shape;
the various less specific types are not supported. While this looks incomplete at first glance, it is
noteworthy that such type definitions would immediately lead to arrays of non-uniform shape, e.g. a
matrix whose rows have different length. There is no doubt that this would be an extremely powerful
extension to the homogeneously shaped arrays that SAC supports today, but it would likewise require
a non-trivial extension of the code generator and runtime system that we leave for future research.

3.3.2 Type Conversions

SAC uses C-like cast expressions to change the type of an expression whenever the data representation
remains unaffected, i.e. between user-defined types and their defining types or vice versa. In contrast
to C, SAC does not use cast expressions to actually change data representations, e.g. when converting
from an integer type to a floating point type, between floating point types of different precision or
between integer types of different bit width. For all these purposes SAC uses dedicated conversion
functions to express the fact that such conversions actually require an operation performed at runtime
rather than just changing the type interpretation of a value.

These conversion functions are named tobool and tochar for converting into non-numerical values.
For all numerical types these functions are named “to” plus an optional “u” for unsigned integer types
followed by the first letter of the type name (“11” in the case of long long int). The following example
illustrates type conversions in SAC.

use ScalarArith: all;

use StdI0: all;

int main ()
{
double x;
float y;
int z;

x = 2.3;
print (x);

y = tof(x);
print (y);

z = toi(y);
print (z);

return z;

Listing 3.9: Type conversions
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Chapter 4

With-Loops

This trail aims at providing a hands-on introduction to the key language construct of SAC: the with-loop.
It constitutes the generalisation of the set-expression as introduced in the lesson 2.2 on Shape-Invariant
Programming and can be seen as a shape-invariant form of the map-reduce template or the array
comprehensions found in other functional languages. However, in contrast to these, the with-loop was
carefully designed to enable radical code optimisations as well as compilation into high-performance,
concurrently executable code.

A note for language design freaks:

In fact, almost all array operations introduced in earlier trails are defined by with-loops within the
standard library. This design combines two major advantages:

* better performance, as the conformity enables optimisations to be more generally applicable,
and

¢ increased flexibility, as the user can modify the definition of all standard operations.

The introduction of with-loops comes in a single lesson which step-wise introduces all features and
variants of with-loops in SAC.

4.1 Lesson 6: with-loop Basics

4.1.1 Basic Components
Generally, with-loops are composed of three different components:
e sets of index vectors (referred to as generator-ranges),
¢ functions that map index vectors to arbitrary values (generator-expressions), and

e combining operations (with-loop operators) that take such values and construct arrays from them.

In its simplest form, a with-loop contains one component of each kind. It then maps the function
defined by the generator-expression to all index vectors from the generator-range in a data-parallel
fashion. This leads to a set of index-value-pairs which are combined into a result array by means of the
given with-loop operator. Let’s have a look at a simple example:

use StdIO0: all;
use Array: all;

int main ()

35



a = with {
([0] <= iv < [5B]): 42;
}: genarray ([7], 0);

print (a);
return O;

b
Listing 4.1: Simple with-loop

Here, the with-loop in lines 6-8 computes the vector [42, 42, 42, 42, 42, 0, 0]. The generator-
range is specified by the code snippet in round brackets in line 7: ([0] <= iv < [5]). It denotes the
set of vectors {[0], [1], ..., [4]}. The generator-expression here is the constant 42. Hence, the
mapping function fmap maps any index vector iv into 42, i.e. we have fmap(iv) = 42. Finally, the
with-loop operation is specified as genarray ([7], 0). This operation computes an array of shape [7]
where:

a[iv]:{fmap(m ive {[0l, (1, ..., [41}
0 otherwise.

Generator-ranges and generator-expressions always occur in pairs. Jointly they form a syntactical
unit, which we refer-to as generator. As we will see later, with-loops can contain arbitrary numbers of
generators. They are enclosed in curly brackets.

Exercise 25. What result do you expect if we eliminate the generator from the above example?
What results do you expect if we modify the generator-range in the above example into:

o ([-2] <= iv < [3])?

e ([0] <= iv < [8])?

([6] <= iv < [B])?

([8] <= iv < [B1)?

([6] <= iv < [01)?

[Hint: You should compile these examples with the option -check c being enabled]

4.1.2 Generator Ranges

SAC offers quite some flexibility when it comes to specifying generator ranges. First of all, the use of
index vectors in the bounds enables the convenient specification of n-dimensional index ranges. Let us
look at a few examples for the 2-dimensional case:

use StdI0: all;
use Array: all;

int main ()

{
a = with {
([0,2] <= [i,j] < [5,6]1): 42;
}: genarray([5,6], 0);
print(a);

shp = [5,6];
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a = with {
(0Oxshp <= iv < shp): 42;
}: genarray(shp, 0);
print (a);

a = with {
(. < iv < .): 42;
}: genarray([5,6], 0);
print(a);

(. <= jv=[x,y]l <= [4,5]): 42;
}: genarray( [5,6], 0);
print(a);

(. <= [i,j] <= . step [1,4]1): 42;
}: genarray([5,6]1, 0);
print (a);

(. <= [i,j] <= . step [2,4] width [1,2]): 42;
}: genarray([5,6], 0);
print (a);

return O;

Listing 4.2: Generator Range Specifications

As we can see from the first with-loop in lines 6-8, a vector of scalar indices can be used where we
previously used the variable iv to denote the entire index vector. In cases where the dimensionality
of the with-loop is statically fixed, this sometimes comes in handy. However, if we want to adopt a
more generic, shape-invariant programming style, it becomes mandatory to use vectors for the index
variable as well as for the bounds.

Note here, that the ability to use vectors rather than componentised indices and bounds is absolutely
crucial here! It constitutes the enabling factor for specifying with-loops in a shape-invariant style as
the length of those vectors may remain unknown until runtime. It is this particular feature that sets
the with-loops apart from most conventional language constructs for data-parallel array operations.

The with-loop in lines 12-14 demonstrates a typical case where the dimensionality of the resulting
array is solely determined by a vector (here shp). A slightly more elegant way for the most frequent
case is the use of a syntactical shortcut supported by SAC. The symbol ““.” can be used in the position
for the lower and upper bound, denoting the lowest legal index and the highest legal index into the
array to be created, respectively. This is examplified in the with-loop in lines 17-19. Note here, that
this generator-range does not cover the entire legal index space of the resulting array! As the “.”
always represents legal indices, we have to make sure that we use <= on both sides if we want to cover
the entire range. The example presented here, excludes the extreme cases and, thus, covers all inner

elements of the resulting array only.

Exercise 26. What happens if the length of the vectors within the generator-range or the shape
expression in the genarray-operation do not match? [Hint: You should compile these example with
the option -check c being enabled]
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The with-loop in lines 22-24 demonstrates how both, a vector version of the index vector and
scalarised versions can be made available for the generator-expression. It also examplifies that a mix of
the .-symbol and explicit expressions can be used for the bounds.

The remaining two with-loops demonstrate the ability to specify rectangular grids of indices. The
vector that follows the keyword step specifies the stride of the reoccurence pattern per axis. As a
consequence, the with-loop in lines 27-29 computes an array whose every fourth column is 42 starting
with the very first one.

The use of the vector after the keyword width enables the programmer to denote more than one
index per stepping period. The with-loop in lines 27-29 computes a matrix where 1 x 2 blocks of the
value 42 are placed in the upper left corner of each 2 x 4 grid of the resulting array.

Exercise 27. Can you achieve the same result array as the last with-loop of the above examples without
using the step/width facility? [Hint: The solution may be surprisingly short!]

4.1.3 Generator Expressions

As we have seen in the previous sections, each generator expression implicitly defines a mapping
function from indices to expressions. The parameters of these functions are derived from the index
variables introduced in the associated generator range specifications. More complex generator expres-
sions can be specified by assignment blocks that can be inserted between a generator range and the
associated generator expression. Here a few examples:

use StdI0: all;
use Array: all;

int main ()

{
a = with {
([0,11 <= [i,j]1 < [6,6]1) {
div, mod = divmod( i, j);
}: mod;
}: genarray([6,6], 0);
print(a);
a = with {
(. <= [i,j] <= .): (i==j ? 1: 0) ;
}: genarray([6,6], 0);
print (a);
a = with {
(. <= [1i] <= ) A
mval = 1ij;
val = sum(with {
(. <= [i] <= .): i,
}: genarray([mvall, 0));
}: val;
}: genarray ([6], 0);
print (a);
return O;
}

Listing 4.3: Non-trivial generator expressions
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The first with-loop in lines 6-10 shows a typical scenario. The function divmod returns two values
rather than just one. Rather than defining an explicit mapping function that passes on the desired
return value, we can specify this selection directly.

The with-loop in lines 13-15 demonstrates how non-trivial expressions can be used even without
necessitating the introduction of an assignment block.

The scope of variables that are defined in such an assignment block is strictly local to that block.
Such a variable can neither be referenced within other generators of the same with-loop nor outside of
the with-loop. Note, however, that with-loops can be arbitrarily nested. An example for such a nesting
is shown in the with-loop in lines 18-25 of the examples above.

Exercise 28. What do you expect to happen, if a variable that is defined in such an assignment block
has the same name as the index variable? Where is the “modified” version observable?
Why can the variable mval in the example above be safely replaced by i?

414 Reductions and further with-loop Operations

Besides the genarray with-loop operator described so far, SAC supports a few more. These are:
* amodarray operator which “modifies” an existing array, and
* two fold operators that enable the specification of reduction operations

The modarray variant is very similar to the genarray variant. The only difference is that neither
the shape of the result nor a default element for unspecified index positions are explicit. Both of these
are taken from a specified array that serves as a template. The second with-loop in lines 11-13 of the
example below demonstrates this. Here, a new array b is computed from the array a by negating each
second element of a. As in lesson 2.1 on arrays as data, printing a in line 15 shows that in fact two
different arrays have been created.

use StdI0: all;
use Array: all;

int main ()

{

(. <= [i] <= .): i,
}: genarray( [61, 0);
print(a);

(. <= iv <= . step [2]): -aliv];
}: modarray(a);
print (b);
print (a);

c = with {
([0] <= iv <= [5]1): aliv];
}: fold(x, 1);
print (c);

d = with {
([0] <= iv <= [5]): aliv];
}: foldfix(x, 1, 0);
print (d);
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return O;

Listing 4.4: Further with-loop operators

The two final examples demonstrate how reduction operations can be specified in SAC. The first
variant (lines 17-19) is the standard variant for reductions. It requires the specification of a folding
function (* in this case) and of a neutral element (1 here). As with the earlier variants, all index
vectors from the generator range are mapped according to the generator expression. Subsequently all
computed values are folded using the specified folding function. Note here, that no particular folding
order is guaranteed! In order to obtain deterministic results on a multicore machine this requires the
specified folding operation to be both, associative and commutative.

The final with-loop in lines 22-24 is a slight variant of the fold version. It stems from the observation
that some reductions can be shortcut when a certain fixpoint value has been met. In the given example
of multiplication this is the value 0. Whether the underlying implementation makes use of this extra
information or not is not specified. The computational result of both, the fold and the foldfix variant
are the same, provided that the specified fixpoint value in fact constitutes one for the specified folding
operation.
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Chapter 5

Working with Modules

This chapter explains the basic principles of using modules in SAC. Prior to modules, a short introduc-
tion into SAC name spaces is given.

5.1 Name Spaces

In general, name spaces are used to extend the set of possible identifiers and thus inhibit potential
name clashes. SAC supports multiple name spaces, although these are not explicitly defined by the
programmer. Instead, every module and program has its own name space. The name space of a module
is denoted by its name, a program uses main as its name space identifier. As an example of using name
spaces consider Listing 5.1.

int main ()

{
StdI0::printf ("Hello World!\n");
return O;

}

Listing 5.1: Hello world program with name spaces

Instead of an import statement, a qualified function name is used. A qualified identifier always
consists of a name space identifier, followed by a double colon and the unqualified identifier, in this
case a function identifier. Besides of functions, fully qualified names may as well be used for types and
global objects.

As it would be bothering to precede each identifier with the name space it belongs to, SAC supports
multiple ways to automatically decide the right name space and generate a fully qualified identifier
implicitly (or internally).

5.2 Use Statements

To simplify the use of identifiers from other modules, SAC allows us to specify a search space whose
identifiers can be used in an unqualified fashion. By default, this search space contains all identifiers
from the current name space. To add a complete name space to the current search space, you may use
the statement use «: all; where a gives the name of a name space. Using this technique, the hello
world example can as well be expressed as follows:

use StdI0: all;

int main ()

{
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printf ("Hello World!\n");
return O;

Listing 5.2: hello world with use statement

However, an identifier is not allowed to have multiple occurrences within the search space as far
as types and global objects are concerned. For function symbols the same holds modulo overloading
based on parameter types.

To further avoid name clashes, SAC supports a more specific way to define search spaces. Instead
of the keyword all, a comma separated list of identifiers can be given. The following version of hello
world uses a more specific use statement:

use StdI0: {printf};

int main ()

{
printf ("Hello World!\n");
return O;

Listing 5.3: hello world with specific use statement

In this example, only printf is made available to the search space and can thus be used without
explicitly specifying its name space. In some occasions it can be useful to add all identifiers except a
given set to the search space. Consider a module FastI0 reimplementing all functions of StdI0. To use
FastIO except the printf function, but StdI0: :printf one might write:

use FastIO: all except {printf};
use StdI0: {printf};

int main ()

{
printf ("Hello World!\n");
return O;

Listing 5.4: hello world with use all but statement

This adds all identifiers from FastIO to the current search space except FastIO: :printf. This
allows the function printf to be imported from module StdI0.

5.3 Import statement

So far, we added identifiers to the search space of the SAC compiler to avoid explicitly specifying
their name spaces each time they are referenced. As function signatures have to differ in number
of arguments or their types, the use statement prevents overloading of functions by shape across
module boundaries. In fact, SAC only supports overloading by shape within a single name space.
Otherwise, the meaning of a fully qualified identifier could differ when being used in different scopes.
To nonetheless allow for successive overloading in separate modules, SAC provides a mechanism for
cloning functions using the import statement.

import StdIO0: {printfl};
int main ()

{
main::printf ("Hello World!\n");
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return O0;

Listing 5.5: hello world with import statement

In this example, the statement import StdI0: {printf} creates a (conceptual) copy of the function
printf in the current name space main. Consider a module foo containing a function int [*] bar (int[*]).
This function can now be overloaded as follows:

import foo: {bar};

int [+] bar(int [+] x)

{
V4 T */
}
int main ()
{
/¥ L. */
y = bar(x);
VA */
}

Listing 5.6: bar overloading

Within the name space main there are two instances of bar, the one imported from foo and the one
defined within main itself. Keep in mind, that there is a conceptual copy in main, so both are defined in
main and so overloading can take place.

Be careful when importing types, as an imported type is regarded as different to its origin type by
the type system as they were defined in different name spaces. However, you might still exchanges
values between both types by means of a cast expression.

5.4 Putting It Together

Both types of module statements can be mixed in any possible way, as long as no name clash is
introduced by them. Always keep in mind that an import statement adds all identifiers to the current
name space and thus to the current search space, as well. The following example creates a name clash
by using and importing the same identifier:

use StdIO0: all;
import StdIO: {printf};

int main ()

{

printf ("Never see this!\n");
return O;

Listing 5.7: name clash example

Here, printf is imported to the current name space, so there is an identifier main: : printf, which
is part of the compiler search space. Furthermore, the use statement adds the complete name space of
module StdI0 to the current name space, especially the identifier StdI0: :printf. Thus there are two
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identifiers with the same unqualified name within the search space. To solve this, a restriction to the
use statement can be used.

use StdI0: all except {printf};
import StdIO0: {printf};

int main ()
{
printf ("Hey, it works!\n");

return O;
}

Listing 5.8: name clash example

In this example, the identifier StdI0: :printf is no longer added to the compiler search space and
thus no name clash originates.

5.5 Implementing Modules
A SAC module implementation essentially looks just like a program, being a collection of type, global

object and function definitions. Unlike a program, a module starts with the key word module followed
by the module name, i.e. the name space, and a semicolon.

module mymod;

provide all except {fool};
export {foo};

int foo(int x)

{

return /* ... */;
}
int bar(x int x)
{

return /* ... */;
}

Listing 5.9: module implementation example

The more interesting aspect of a module (name space) is the question which symbols (types, global
objects and functions) are made available outside the module and which are merely accessible internally
within the module itself. Two kinds of statements using the key words provide and export provide
fine-grained control over the availability of symbols outside the current module. By default any symbol
defined in a module is only accessible in the module itself. Using the provide statement all or selected
symbols can be made available to be “used” by other modules or programs. With the export statement
symbols are made available for either use or import by other modules or programs. The syntax of
provide and export statements is very similar to that of the corresponding use and import statements.
Either all symbols are provided/exported uniformly, or a specific list of symbols is concerned, or all
but a given list of symbols.
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Chapter 6

Case Studies

This trail will illustrate how to use SAC for real-world applications. The following exercises make use
of the techniques introduced in this tutorial so far. Working through this trail shall give you some more
hands-on experience with the language itself and at the same time show you how to employ SAC to
solve your every-day problems in an efficient way.

6.1 Lesson 7: Image Processing

Digital image processing spans across a vast area of applications. Ranging from digital photography
over astronomy to surgery-assisting medical imaging, most applications still share as their underlying
theory some sort of basic signal processing on two-dimensional (and potentially higher-dimensional)
signals. It is common to work with discretised signals, i.e. an approximation of the originally analogue,
continuous version of the signal.

In this exercise we will focus on two basic image filters on static, two-dimensional, 8-bit gray-scale
images with a resolution of Xmax X ¥max, such that an image is a 2D function

S:NxN — N

S(xy) = Uxy, i X < Xmax AY < Ymax
’ 0, otherwise

where Vx,y : 0 < vy, < 255. Informally speaking, the parameters x and y determine the position
within the image and vy, determines the gray-scale value of the pixel at this position.

A common technique to modify an image is to apply a filter of desired properties to it. In many
cases, an image filter F again is a two dimensional signal as the one described above. The application
of a filter to an image is expressed by the 2D (discrete) convolution F @ S of these two signals:

Frypesty) = Y Y FGbSE—jy—k

j=—00 k=—0c0

With this simple form of filtering, a wealth of image modifications are expressible. Depending on
the choice of the filter mask we can achieve effects such as smoothing, sharpening, edge detection,
embossing and many more.

In SAC we can represent these signals as 2D arrays where x and y are the column and row indices
and each element corresponds to one pixel. The application of a filter to an image may then be expressed
using a stencil operation as it was introduced in an earlier part of this tutorial (Section 2.2): The filter
mask is positioned with its center point over each pixel of the original image. At each position, the
pixel value of the image and its corresponding value of the filter mask are multiplied. The pixel value
at the same position in the result image is determined by the sum of these products (weighed sum).
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Exercise 29. The Sobel operator is an edge-detection filter that computes the gradient image from an
input signal. The filtering process consists of three steps: In the first step, horizontal edges are detected,
in the second step vertical edges are detected, and in the final step, both sub-results are combined to
the resulting gradient image. The first two steps are in fact two independent operations, each of which
requires its own individual filter mask:

1 0 -1 1 2 1
FF=12 0 -2 F,=120 0 0
1 0 -1 -1 -2 -1

Applying these two masks to an input image S yields two sub-results, one highlighting horizontal
edges (Sy = Fx ® S), the other highlighting vertical edges (S, = F, ® S). We compute the final gradient
image by adding the two sub-results Sy, = Sy + S;. As Sy, may contain elements with a value greater
than 255, we need to cap each pixel value at the maximum allowed value of 255. See Fig. 6.1 for an
example of how an image and its gradient image may look like.

Quite the opposite to edge detection, a smoothing or blurring filter is used to make edges appear
less prominent. Commonly applied filters of such kind are the 3 x 3 and 25 x 25 Gaussian blurring
stencils:

1 4 7 4 1
L (121 L[4 20 33 20 4
Go=1z-(2 3 2 Gos=g37 |7 33 55 33 7
121 4 20 33 20 4

1 4 7 4 1

Write a program that applies these operators to a given image and outputs the result for later use:

e Write a function apply that takes an image and a filter mask as input and returns the convolution
of the two. Use either with-loops or axis-control notation to achieve this. Take care of boundary
conditions when implementing the convolution.

* Write a function sobel that takes an image as input and applies Fy and F, to the image. Fur-
thermore, add Sy and S, with capping so that this function returns the final result of the Sobel
operation.

¢ Write functions gauss9 and gauss25 that take an image as input and apply Gy and G5 to the
image.

* Write amain function that reads in an image from stdin, calls sobel, gaussBlur9 and gaussBlur25
on this image and then write the results back to stdout.

You may want to use the following skeleton for your program:

use Structures: all;
use StdI0: all;
use Clock: {time, gettime, difftimel};

/* Helper to write matrixz to stdout in plain matriz format.

The produced output (let’s say m.dat) can be used with gnuplot

like so:

gnuplot> plot "m.dat" matriz with image */
void writeMatrix( int[.,.] m)
{
for (y=0; y<shape(m)[1]; y++) {
for (x=0; x<shape(m)[0]; x++) {
printf("%d ", ml[x,yl]l);
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}
printf ("\n");

}
}
/% Convolution with given mask. */
inline int[.,.] apply(int[.,.] mask, int[.,.] img)
{
/* Implement convolution here. *x/
}
int[.,.] sobel(int[.,.] img)
{
SY = [
(+, 2, 11, (o, o, 01, [-1, -2, -1]
1;
/* Complete thts function here. */
}
int[.,.] gaussBlur9(int[.,.] img)
{
/% Complete this function here. */
}
int[.,.] gaussBlur25(int[.,.] img)
{
/* Complete thts function here. */
}
int [*], time timestamp (int [*] img)
{
return (img, gettime());
}
int main ()
{
fprintf (stderr, "\nReading image in Fibre format...\n");

img = FibreScanIntArray(stdin);

fprintf (stderr, "\nApplying filter ...\n");
img, start = timestamp(img);

img = sobel(img);

img, end = timestamp (img);

/% Call the other filters here. */
fprintf (stderr, "\nFinished filtering after Y%fs\n", difftime(end,
fprintf (stderr, "\nWriting result image ...\n");

writeMatrix (img);

return O;
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Listing 6.1: Skeleton of sobel.sac

Compile your source code with and without the option -t mt_pth option for multi-threaded execution
and experiment with various thread counts. On faster machines it might be necessary to apply the
filter multiple times (copy and paste line 55 a couple of times) to see measurable speed-ups.

NB: The Fibre format encodes, in addition to the raw data, shape information. By using FibreScanIntArray

this program is able process 2D images of any size and it is not fixed to statically known input sizes.

Figure 6.1: The SAC logo before (left) and after (right) edge detection

6.2 Lesson 8: Computing Mandelbrot Images
Exercise 30. This exercise is about creating a basic implementation for computing mandelbrot images.

1. To get started, you may want to use the files mandelbrot_start.sac and Fractal_tierl.sac
which, in essence, contain the IO-code for visualising the mandelbrot pictures. A first running ver-
sion can be obtained by implementing the missing function bodies in Fractal_tierl_empty.sac:

* escapeTime which implements the iteration on arrays of complex numbers, and
¢ genComplexArray which computes a two-dimensional array of complex numbers that repre-
sent a descritisation of C2.

2. Waiting for the final picture can be rather unpleasant if it is not clear whether the chosen fraction
of C? yields an interesting picture and the iteration limit is high. therefore, as a first extension,
try to modify the main function in mandelbrot_start.sac so that it computes the mandelbrot
picture with increasing resolution without changing the overall size of the picture.

Compute resolutions [5,5]1, [10,10],..., [320,320] and display them consecutively ina [320,320]
display by replicating the found values accordingly.

Hint: define a function stretchRgb which takes an array of type color[.,.] and an inte-
ger stretching factor stretch and replicates each element of the array into a square of shape
[stretch, stretch].

3. The function intArrayToMonochrome maps all escape values into a color by means of a clut. Can
you express this operation without a with-loop?

Hint: You may find inspiration in one of the earlier tasks!
4. Try using the compiler option -t mt_pth to experiment with multi-core machines!

5. Try using the compiler option -t cuda to experiment with graphics cards!
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6. Try using the compiler option -b11:cyc to inspect the high-level, optimised intermediate code.

Exercise 31. In this exercise, we improve the way the colours are chosen in order to obtain smoother
transitions. We will use a common approach referred to as normalized iteration counts. A normalized
iteration count for a point in the complex plane z is computed by using the iteration count # and the
value at that position z; during the final iteration. Using these two values, the normalized iteration
count is defined as t, := (t + 1) — log, (log,(|z¢|)) for those values that escape and as 0 otherwise.

1. The module Fractal_tier2.sac contains stubs for the missing functionality required in this
exercise:

* normalizedIterationCount which implements the normalisation of iteration counts by
taking the final computed value into account.
Hint: The function escapeTime only computes the number of iterations before the value at a
given position escapes. To normalize these, the final value at that position is required, as
well. For this, we have provided a function escapeValue.

* doubleArrayToRGB maps the normalized iteration counts, which are double values, to an
RGB colour-triple. To derive an RGB value, first scale all values such that they are in the
interval 0 < x < 360. This value can then be used as the hue in the HSB model.

Hint: The module Color8 defines a function Hsb2Rgb that converts a HSB color description
into its corresponding RGB representation.

Exercise 32. In this exercise, we apply the filters from the previous case study to the mandelbrot
pictures. As before, we have provided stubs for the missing functionality. For this exercise these can be
found in the file Stencil_tier3.sac.

1. Implement the functions apply, sobelEdges, gaussBlur and gaussBlur25 as described in the
previous case study.

2. The three filters described above only operate on a single channel, e.g. a gray-scale image. To lift
these to colour images, implement a corresponding function for each filter that applies the filter
to each colour separately.
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Part 11

Trails Covering More Advanced
Features of SAC
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Chapter 7

Treasures in the Standard Library

This trail gives the reader a tour through the main components of the standard library. For the time
being, it is merely a collection of points of interest. We hope that this will evolve over time.
So far, we only have one lesson on benchmarking in SAC.

7.1 Lesson: Benchmarking SAC Programs

Following the case studies in the previous section, the question arises what the best technique for
benchmarking SAC programs might be. The easiest way, of course, is by utilising the UNIX time (or
timex) command when starting the to be benchmarked program on the command line of the system
shell. The disadvantage of this technique is that the whole program is benchmarked, and run time
spent in setup or shutdown parts of the code is indistinguishable from time spent in the more relevant
parts of a program.

For many program codes exposing in one way or another an iterative nature, this is often still the
technique of choice. One simply measures whole program runtime for x iterations and for y iterations
and then derives the average time per iteration by dividing the difference in runtimes by the difference
in iterations computed. Under the (likely) assumption that setup and shutdown overhead is constant
in the number of iterations, this technique allows for simple and still realistic benchmarking without
augmenting the source code for benchmarking.

If the above technique for one or another reason is insufficient, the SAC standard library provides
access to the system real time clock via the classes RTClock and RTimer. The code example below
illustrates how this works.

use RTClock: all;
use RTimer: all;

int main ()
{
int secs;
int nsecs;
double time;
timer = createRTimer ();
startRTimer (timer);

doRelevantComputation(/* ... */);

stopRTimer (timer);
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secs, nsecs = getRTimerInts(timer);
time = getRTimerDbl (timer);

destroyRTimer (timer);

b
Listing 7.1: Benchmarking with the real time clock

First, we make all symbols from the name spaces RTClock and RTimer available to our program via
the use statements in lines 1 and 2. Access to the real time clock is indirect through the creation of one or
more real clock timers. Such a timer comes into existance through execution of the createRTimer function.
Timers can (repeatedly) be started and stopped using the functions startRTimer and stopRTimer,
respectively. If a timer is started and stopped multiple times, elapsed times are accumulated. Where
this is not desirable, a real clock timer can be reset using the resetRTimer function. While the real timers
keep their information in an opaque format, two functions support the conversion of timer information
into standard SAC values. The function getRTimerInts yields two integer values, specifying elapsed
seconds and nanoseconds, respectively; the function getRTimerDbl yields elapsed time in seconds as a
double precision floating point value.

Note that starting an already running timer has no effect. Likewise stopping a non-running timer
has no effect either. Enquiring the state of a running timer yields the timer’s value when it was
started. Last not least, a timer should be removed when it is no longer used or needed by calling the
destroyRTimer function.

Benchmarking functional programs through starting, stopping and enquiring timers is not without
a conceptual problem: In the absence of any data dependency between the starting and the stopping
of the timer on the one side and the relevant computation to be benchmarked on the other side, the
compiler is free to change the order of these three parts of the computation. And, an aggressively
optimising compiler like sac2c may actually do this, which, of course, would render the timing
completely useless. To safely prevent the compiler from changing the order of computations, we need
to apply a little trick:

/* return-type */ doRelevantComputation(/* ... */)
{

/* L. */

touch (RTclock);

V& S */

Listing 7.2: Binding function to timer

Somewhere in the definition of the doRelevantComputation you need to touch the real time clock
as shown above. And, you must not declare the work function as an inline function.

Why this helps warrants further explanation; it is deeply connected to the SAC I/O concept, which
is based on a variant of uniqueness typing.
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Chapter 8

User Defined Types

In this trail covers the definition and use of user-defined types in SAC.
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Chapter 9

Dealing with I/O and State in General

SAC supports states through objects that are passed implicitly around. This allows the programmer to
specify stateful expressions as sequences while maintaining the sideeffect free functional semantics of
the SAC language. The underlying idea is called global objects and will be discussed through out this
chapter.

9.1 Lesson: States and Objects — the basics

In most languages, classes are based on special record types containing instance variables and methods.
In SAC, classes are based on modules, as they serve the same need: A module pairs functions and
types to a group. Instead of instance variables, classes in SAC have a special class type that builds up
an instance of a class. As this type always is implicit, direct access to it is only possible from within the
same namespace. The following example shows the class Counter:

class Counter;
classtype int[];

public Counter create_Counter ()

{

return (Counter)0;

3

public void increment (Counter &c)

{
c = (Counter) ((int)c + 1);
}

public int getValue (Counter c)
{
return (int)c;

3

public void destroy_Counter (Counter &c)
{
}

Listing 9.1: class Counter
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A class file starts with the class keyword, followed by the name of the class. Another keyword
unique to classes is classtype. The statement in line 3 defines int [] as the classtype of class Counter.
All functions within the class expect an instance of Counter, e.g. a int [] value, as their argument. By
using the SAC call by reference technique, these functions are able to destructively modify an instance
and thus its state.

The function increment increments the value of Counter instance ¢ and returns the new, modified
version. A special function is create_Counter as it can be used as a constructor function for class
Counter. The counterpart is the destructor function destroy_Counter. All class implementations must
at least have one constructor function and a destructor function. However, the destructor function can
be empty like in the example above.

9.1.1 Extending Classes

Like modules, it is possible to extend classes by new functions. However, a class can only be the
derivative of one single other class. There is no support for multiple derivation. Furthermore, there is
no possibility to extend the class type — extension is limited to functions. The following listing shows
how to extend our Counter example to a new class capable of decrementing its value:

class DecCounter extends Counter;

public void decrement (Counter &c)

{
¢ = (Counter) ((int)c - 1);

Listing 9.2: DecCounter class

The keyword extends in line 1 signals that the class DecCounter is derived from Counter. Further-
more, there is no class type definition as the class type is as well derived from class Counter. However,
the class type can be accessed as if it had been defined within the current class.

9.1.2 States using Classes
9.1.3 Global Objects

9.2 Lesson: Nondeterminism through Shared State in Wihth-Loops
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Chapter 10

Interfacing with Other Languages

This trail explains on how to use SAC libraries from other languages and how to integrate foreign
libraries into SAC programs.

So far, we have four lessons. One that explains how to utilise C functions and libraries in SAC
and three more lessons that explain how to call SAC from the languages C, C++, and FORTRAN,
respectively.

10.1 Lesson: Calling C from SAC

10.1.1 Using C in the small

As a starting point, let us assume that you do have a C-library that you would like to use from SAC.
Whether you do have access to the library’s sources or not does not matter at all. All you need is an
object file or a library file and knowledge about the signatures of the functions that are contained in it.
Typically, you will have a header file containing the needed extern declarations.

For example, you may have a file simple.h which looks like this:

#ifndef SIMPLE_H
#define SIMPLE_H

extern int add(int x, int y);

#endif
Listing 10.1: Simple example header file in C

We furthermore assume that you have an object file simple. o that contains an implementation of this
function. You can generate a suitable object file by putting

#include "simple.h"

int add(int x, int y)
{
return x + y;

b
Listing 10.2: add function in C

into a file simple.c and compiling it by gcc -c simple.c or similar.

Now, if you want to make this function available in SAC, all you need to do is to add an external
declaration with some additional information on where to find the object file into your SAC program.
For example:
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external int add(int x, int y);
#pragma linkobj "simple.o"

int main ()

{
StdI0::printf ("1 plus 1 equates to %d\n", add( 1, 1));

return O;

Listing 10.3: add function used by SaC

If you compile this with sac2c you will obtain an executable which should yield the expected result.

Exercise 33. Note here, that the SAC compiler has no guarantees that the signature that has been
provided here indeed matches your implementation. Try what happens if you wrongly declare both
arguments of add to be of type double.

To get more type safety here, you can share the C header file with the SAC compiler by using yet
another pragma:

external int add(double x, double y);
#pragma linkobj "simple.o"
#pragma header "simple.h"

int main ()

{
StdI0::printf ("1 plus 1 is %d\n", add( 1, 1));

return O;

Listing 10.4: add function used by SaC

If you compile this version the compiler will point out that it expected a function which satisfies
int add (double SACl_x, double SACl_y);
Listing 10.5: expected type
and not the actually implemented one:

int add(int x, int y);
Listing 10.6: actual type

A note for proper software engineers:
You always want to include your header file here; just to make sure that you got the interface right!

Sometimes, a given C function is supposed to return more than one value or the programmer wants
to allow the function to change a value in the calling context. This is typically implemented by passing
a pointer to the to-be-changed argument or to the expected extra return value as an argument. Let us
consider a slight variant of our simple example here:

#include "simple.h"
void addto(int *x, int y)
{

*X += y;

Listing 10.7: addto function in C
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Since SAC doe not have the notion of explicit memory or even side-effects, one may think that such a
function cannot be used from SAC. The key idea for enabling the use of this function is to disentangle
the memory aspect from the purely operational one. This still is an addition operation as before. The
only difference is that the result has been "mapped” into the first argument. We can model this in SAC
by telling the compiler that the this mapping of the result into the first argument actually has taken
place:

external int addto(int x, int y);
#pragma linkobj "simple.o"
#pragma header "simple.h"
#pragma linksign [1,1,2]

int main ()

{
StdI0::printf ("1 plus 1 is %d\n", addto( 1, 1));

return O;

Listing 10.8: addto function used by SaC

The pragma linksign tells the compiler where to map each of the return types and arguments into.
The first entry of the vector after the keyword linksign tells the compiler that the return value will be
the first argument. The next one refers to the first argument. This mapping of a return value to the
same position as one argument tells the compiler that this will require a “pointer-construction”.

Exercise 34. Play around with the linksign pragma and find out what the restrictions are. How do you
have to define the linksign pragma to get the same signature as in the add example?

As you have seen, the linksign pragma allows for quite some messing around with the signature.
In particular disentangling in-out-parameters like the first argument of addto often creates the desire
to change the name of the function. This also is needed when names that exist in a given library clash
with names from those of another library. To facilitate this as well, SAC provides yet another pragma
named “linkname”. With it, our simple example can finally be written as:

external int add(int x, int y);
#pragma linkobj "simple.o"
#pragma header "simple.h"
#pragma linksign [1,1,2]
#pragma linkname "addto"

int main ()
{
StdIO0::printf ("1 plus 1 is %d\n", add( 1, 1));

return O;

Listing 10.9: addto function used by SaC

10.1.2 Dealing with non-scalar arrays

In principle, all the pragmas described in this lesson so far carry over to non-scalar arrays.
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10.1.3 Stateful C functions

10.2 Lesson: Using SAC libraries from C
10.3 Lesson: Using SAC libraries from C++

10.4 Lesson: Using SAC libraries from FORTRAN
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